1
|
Mishra P, Nanda SR, Barpanda T, Dash M, Dash S, Choudhury S, Roul S, Mishra A. The complexity of kodo millet: genomic analysis and implications in crop improvement. PLANTA 2024; 261:15. [PMID: 39680216 DOI: 10.1007/s00425-024-04588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024]
Abstract
MAIN CONCLUSION This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost kodo millet production, nutritional value, and environmental adaptation. Kodo millet is grouped under the genus Paspalum and family Gramineae. It is a tropical African crop that was initially domesticated in India approximately 3000 years ago. It is predominantly cultivated in India as well as in various south-east Asian countries. Recent years have witnessed a resurgence of interest in kodo millet breeding, particularly owing to its outstanding nutritional profile. Kodo millet's ability to adapt to different marginal environments makes it promising to be grown as a part of sustainable agriculture. Availability of a plethora of diverse genetic resources in kodo millet has been instrumental in development of various improved cultivars through conventional breeding. Additionally, functional genomics has been instrumental in decoding the complex genetic architecture of kodo millet, thus enabling identification of key genes associated with drought tolerance, disease resistance, and improved nutritional profiling. Additionally, transcriptomics has deepened the insights into gene expression pattern in response to various stresses, offering valuable information for developing resistant genotypes. The expressed sequence tags (ESTs) available will surely benefit the scientists working on molecular breeding of millets through development and use of SSRs and SNPs markers under the marker assisted selection (MAS) scheme. This article examines potential directions for future research, including the advancement of genomics and targeted breeding approaches for holistic development of the kodo millet.
Collapse
Affiliation(s)
- Pratikshya Mishra
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Sourav Ranjan Nanda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tanya Barpanda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Suman Dash
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Suman Choudhury
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Sarojini Roul
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Abinash Mishra
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Mishra A, Dash S, Barpanda T, Choudhury S, Mishra P, Dash M, Swain D. Improvement of little millet (Panicum sumatrense) using novel omics platform and genetic resource integration. PLANTA 2024; 260:60. [PMID: 39052093 DOI: 10.1007/s00425-024-04493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
MAIN CONCLUSION This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost little millet production, nutritional value, and environmental adaptation. Little millet (P. sumatrense) is a staple grain in many parts of Asia and Africa owing to its abundance in vitamins and minerals and its ability to withstand harsh agro-ecological conditions. Enhancing little millet using natural resources and novel crop improvement strategy is an effective way of boosting nutritional and food security. To understand the genetic makeup of the crop and figure out important characteristics linked to nutritional value, biotic and abiotic resistance, and production, researchers in this field are currently resorting on genomic technology. These realizations have expedited the crop's response to shifting environmental conditions by enabling the production of superior cultivars through targeted breeding. Going forward, further improvements in breeding techniques and genetics may boost the resilience, nutritional content, and production of little millet, which would benefit growers and consumers alike. The research and development on little millet improvement using novel omics platform and the integration of genetic resources are summarized in this review paper. Improved cultivars of little millet that satisfy changing farmer and consumer demands have already been developed through the use of these novel breeding strategies. This article also explores possible future initiatives, such as the development of targeted breeding, genomics, and sustainable agriculture methods. The potential for these measures to boost little millet's overall production, nutritional value, and climate adaptation will be extremely helpful in addressing nutritional security.
Collapse
Affiliation(s)
- Abinash Mishra
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
| | - Suman Dash
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Tanya Barpanda
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Suman Choudhury
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Pratikshya Mishra
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Digbijaya Swain
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Tang P, Ni Y, Li J, Lu Q, Liu C, Guo J. The Complete Mitochondrial Genome of Paeonia lactiflora Pall. (Saxifragales: Paeoniaceae): Evidence of Gene Transfer from Chloroplast to Mitochondrial Genome. Genes (Basel) 2024; 15:239. [PMID: 38397228 PMCID: PMC10888214 DOI: 10.3390/genes15020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.
Collapse
Affiliation(s)
- Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Yang Ni
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jingling Li
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Qianqi Lu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Xu S, Liu W, Liu X, Qin C, He L, Wang P, Kong L, Chen X, Liu Z, Ma W. DUS evaluation of nine intersubgeneric hybrids of Paeonia lactiflora and fingerprint analysis of the chemical components in the roots. Front Chem 2023; 11:1158727. [PMID: 36970400 PMCID: PMC10038168 DOI: 10.3389/fchem.2023.1158727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Intersubgeneric hybrids of Paeonia lactiflora (Paeonia lactiflora pall., P. lactiflora.) cover a huge variety of systems in the genus Paeonia. In recent years, many studies have confirmed that the intersubgeneric hybrids of P. lactiflora. are rich in paeoniflorin and other medicinal ingredients, however, it has always proved difficult to clarify the medicinal value of the hybrids and whether they can be used for medicinal purposes. In this study, the consistency of the plant population was evaluated through DUS evaluation, in order to clarify whether the selected research materials had stability and consistency within the population and specificity between populations. The differences between the paeoniflorin contents in the roots of the nine intersubgeneric hybrids of the P. lactiflora. varieties and two medicinal varieties were critically compared. The differences in the chemical components of the roots of nine intersubgeneric hybrids of P. lactiflora. and reference medicine substances of P. lactiflora. and Paeonia anomala subsp. veitchii (Lynch) D. Y. Hong and K. Y. Pan (Paeonia veitchii Lynch., P. veitchii.) were explored via stoichiometric and chemical fingerprint high performance liquid chromatography analyses. The results showed that there were significant differences in the chemical compositions between the intersubgeneric hybrids of P. lactiflora. and the medicinal reference materials, and the contents of paeoniflorin were elevated such that the hybrids could be used as the raw material for extraction of paeoniflorin, thus providing an opportunity to explore the medicinal value of the hybrids. This study explored the key differential components among the varieties and provides a reference and basis for the study of the medicinal value and the identification of the intersubgeneric hybrids of the P. lactiflora. varieties.
Collapse
Affiliation(s)
- Shiyi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weili Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiamusi College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lianqing He
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi Chen
- Harbin Academy of Agricultural Sciences, Harbin, China
| | - Zhiyang Liu
- Harbin Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Zhiyang Liu, ; Wei Ma,
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Zhiyang Liu, ; Wei Ma,
| |
Collapse
|
5
|
Shekhar S, Prasad AS, Banjare K, Kaushik A, Mannade AK, Dubey M, Patil A, Premi V, Vishwakarma AK, Sao A, Saxena RR, Dubey A, Chandel G. LMT db: A comprehensive transcriptome database for climate-resilient, nutritionally rich little millet ( Panicum sumatrense). FRONTIERS IN PLANT SCIENCE 2023; 14:1106104. [PMID: 36993866 PMCID: PMC10041709 DOI: 10.3389/fpls.2023.1106104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Little millet (Panicum sumatrense) a native of Chhattisgarh, belongs to the minor millet group and is primarily known as a climate-resilient and nutritionally rich crop. However, due to the lack of enough Omic studies on the crop, the scientific community has largely remained unaware of the potential of this crop, resulting in less scope for its utilization in crop improvement programs. Looking at global warming, erratic climate change, nutritional security, and limited genetic information available, the Little Millet Transcriptome Database (LMTdb) (https://igkv.ac.in/xenom/index.aspx) was conceptualized upon completion of the transcriptome sequencing of little millet with the aim of deciphering the genetic signatures of this largely unknown crop. The database was developed with the view of providing information about the most comprehensive part of the genome, the 'Transcriptome'. The database includes transcriptome sequence information, functional annotation, microsatellite markers, DEGs, and pathway information. The database is a freely available resource that provides breeders and scientists a portal to search, browse, and query data to facilitate functional and applied Omic studies in millet crops.
Collapse
Affiliation(s)
- Shweta Shekhar
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Archana S. Prasad
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Kalpana Banjare
- Knowledge and Technology Resource Centre, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Abhijeet Kaushik
- Knowledge and Technology Resource Centre, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Ajit K. Mannade
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Mahima Dubey
- Department of Vegetable Biotechnology, VNR Seeds Private Limited, Raipur, India
| | - Arun Patil
- Department of Vegetable Biotechnology, VNR Seeds Private Limited, Raipur, India
| | - Vinay Premi
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | | | - Abhinav Sao
- Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Ravi R. Saxena
- Knowledge and Technology Resource Centre, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Amit Dubey
- Chhattisgarh Council of Science and Technology, Raipur, India
| | - Girish Chandel
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| |
Collapse
|
6
|
Zhang S, Qu-Bie JZ, Feng MK, Qu-Bie AX, Huang Y, Zhang ZF, Yan XJ, Liu Y. Illuminating the biosynthesis pathway genes involved in bioactive specific monoterpene glycosides in Paeonia veitchii Lynch by a combination of sequencing platforms. BMC Genomics 2023; 24:45. [PMID: 36698081 PMCID: PMC9878870 DOI: 10.1186/s12864-023-09138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Paeonia veitchii Lynch, a well-known herb from the Qinghai-Tibet Plateau south of the Himalayas, can synthesize specific monoterpene glycosides (PMGs) with multiple pharmacological activities, and its rhizome has become an indispensable ingredient in many clinical drugs. However, little is known about the molecular background of P. veitchii, especially the genes involved in the biosynthetic pathway of PMGs. RESULTS A corrective full-length transcriptome with 30,827 unigenes was generated by combining next-generation sequencing (NGS) and single-molecule real-time sequencing (SMRT) of six tissues (leaf, stem, petal, ovary, phloem and xylem). The enzymes terpene synthase (TPS), cytochrome P450 (CYP), UDP-glycosyltransferase (UGT), and BAHD acyltransferase, which participate in the biosynthesis of PMGs, were systematically characterized, and their functions related to PMG biosynthesis were analysed. With further insight into TPSs, CYPs, UGTs and BAHDs involved in PMG biosynthesis, the weighted gene coexpression network analysis (WGCNA) method was used to identify the relationships between these genes and PMGs. Finally, 8 TPSs, 22 CYPs, 7 UGTs, and 2 BAHD genes were obtained, and these putative genes were very likely to be involved in the biosynthesis of PMGs. In addition, the expression patterns of the putative genes and the accumulation of PMGs in tissues suggested that all tissues are capable of biosynthesizing PMGs and that aerial plant parts could also be used to extract PMGs. CONCLUSION We generated a large-scale transcriptome database across the major tissues in P. veitchii, providing valuable support for further research investigating P. veitchii and understanding the genetic information of plants from the Qinghai-Tibet Plateau. TPSs, CYPs, UGTs and BAHDs further contribute to a better understanding of the biology and complexity of PMGs in P. veitchii. Our study will help reveal the mechanisms underlying the biosynthesis pathway of these specific monoterpene glycosides and aid in the comprehensive utilization of this multifunctional plant.
Collapse
Affiliation(s)
- Shaoshan Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Jun-zhang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Ming-kang Feng
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - A-xiang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Yanfei Huang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Zhi-feng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Xin-jia Yan
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Yuan Liu
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| |
Collapse
|
7
|
Wang Y, Hou Y, Wang J, Zhao H. Analyzing lignin biosynthesis pathways in rattan using improved co-expression networks of NACs and MYBs. BMC PLANT BIOLOGY 2022; 22:411. [PMID: 36002818 PMCID: PMC9400238 DOI: 10.1186/s12870-022-03786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The rattan is a valuable plant resource with multiple applications in tropical forests. Calamus simplicifolius and Daemonorops jenkinsiana are the two most representative rattan species, supplying over 95% of the raw materials for the rattan industry. Hence, the wood properties of both rattans have always attracted researchers' attention. RESULTS We re-annotated the genomes, obtained 81 RNA-Seq datasets, and developed an improved pipeline to increase the reliability of co-expression networks of both rattans. Based on the data and pipeline, co-expression relationships were detected in 11 NACs, 49 MYBs, and 86 lignin biosynthesis genes in C. simplicifolius and four NACs, 59 MYBs, and 76 lignin biosynthesis genes in D. jenkinsiana, respectively. Among these co-expression pairs, several genes had a close relationship to the development of wood properties. Additionally, we detected the enzyme gene on the lignin biosynthesis pathway was regulated by either NAC or MYB, while LACCASES was regulated by both NAC and MYB. For D. jenkinsiana, the lignin biosynthesis regulatory network was characterized by positive regulation, and MYB possible negatively regulate non-expressed lignin biosynthesis genes in stem tissues. For C. simplicifolius, NAC may positively regulate highly expressed genes and negatively regulate non-expressed lignin biosynthesis genes in stem tissues. Furthermore, we established core regulatory networks of NAC and MYB for both rattans. CONCLUSIONS This work improved the accuracy of rattan gene annotation by integrating an efficient co-expression network analysis pipeline, enhancing gene coverage and accuracy of the constructed network, and facilitating an understanding of co-expression relationships among NAC, MYB, and lignin biosynthesis genes in rattan and other plants.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Jiongliang Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Huangpu District, Guangzhou, 510530, China
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
| |
Collapse
|
8
|
Yang J, Yan H, Liu Y, Da L, Xiao Q, Xu W, Su Z. GURFAP: A Platform for Gene Function Analysis in Glycyrrhiza Uralensis. Front Genet 2022; 13:823966. [PMID: 35495163 PMCID: PMC9039005 DOI: 10.3389/fgene.2022.823966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhiza uralensis (Licorice), which belongs to Leguminosae, is famous for the function of pharmacologic action and natural sweetener with its dried roots and rhizomes. In recent years, the whole-genome sequence of G. uralensis has been completed, which will help to lay the foundation for the study of gene function. Here, we integrated the available genomic and transcriptomic data of G. uralensis and constructed the G. uralensis gene co-expression network. We then annotated gene functions of G. uralensis via aligning with public databases. Furthermore, gene families of G. uralensis were predicted by tools including iTAK (Plant Transcription factor and Protein kinase Identifier and Classifier), HMMER (hidden Markov models), InParanoid, and PfamScan. Finally, we constructed a platform for gene function analysis in G. uralensis (GURFAP, www.gzybioinfoormatics.cn/GURFAP). For analyzed and predicted gene function, we introduced various tools including BLAST (Basic local alignment search tool), GSEA (Gene set enrichment analysis), Motif, Heatmap, and JBrowse. Our analysis based on this platform indicated that the biosynthesis of glycyrrhizin might be regulated by MYB and bHLH. We also took CYP88D6, CYP72A154, and bAS gene in the synthesis pathway of glycyrrhizin as examples to demonstrate the reliability and availability of our platform. Our platform GURFAP will provide convenience for researchers to mine the gene function of G. uralensis and thus discover more key genes involved in the biosynthetic pathway of active ingredients.
Collapse
Affiliation(s)
- Jiaotong Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hengyu Yan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Lingling Da
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Qiaoqiao Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Qiaoqiao Xiao, ; Wenying Xu, ; Zhen Su,
| | - Wenying Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Qiaoqiao Xiao, ; Wenying Xu, ; Zhen Su,
| | - Zhen Su
- College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Qiaoqiao Xiao, ; Wenying Xu, ; Zhen Su,
| |
Collapse
|