1
|
Hall R, Sawant V, Gu J, Sikora T, Rollo B, Velasco S, Kim J, Segev N, Christodoulou J, Van Bergen NJ. TRAPPopathies: Severe Multisystem Disorders Caused by Variants in Genes of the Transport Protein Particle (TRAPP) Complexes. Int J Mol Sci 2024; 25:13329. [PMID: 39769094 PMCID: PMC11728246 DOI: 10.3390/ijms252413329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The TRAPP (TRAnsport Protein Particle) protein complex is a multi-subunit complex involved in vesicular transport between intracellular compartments. The TRAPP complex plays an important role in endoplasmic reticulum-to-Golgi and Golgi-to-plasma membrane transport, as well as autophagy. TRAPP complexes comprise a core complex, TRAPPI, and the association of peripheral protein subunits to make two complexes, known as TRAPPII and TRAPPIII, which act as Guanine Nucleotide Exchange Factors (GEFs) of Rab11 and Rab1, respectively. Rab1 and Rab11 are GTPases that mediate cargo selection, packaging, and delivery during pre- and post-Golgi transport in the secretory pathway. Rab1 is also required for the first step of macroautophagy, a cellular recycling pathway. Pathogenic variants in genes encoding protein subunits of the TRAPP complex are associated with a range of rare but severe neurological, skeletal, and muscular disorders, collectively called TRAPPopathies. Disease-causing variants have been identified in multiple subunits of the TRAPP complex; however, little is known about the underlying disease mechanisms. In this review, we will provide an overview of the current knowledge surrounding disease-associated variants of the TRAPP complex subunits, propose new insights into the underlying disease pathology, and suggest future research directions into the underlying disease mechanisms.
Collapse
Affiliation(s)
- Riley Hall
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
| | - Vallari Sawant
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Jinchao Gu
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia; (J.G.); (B.R.)
| | - Tim Sikora
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ben Rollo
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia; (J.G.); (B.R.)
| | - Silvia Velasco
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Jinkuk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea;
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 61801, USA;
| | - John Christodoulou
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nicole J. Van Bergen
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia; (R.H.); (V.S.); (T.S.); (S.V.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
2
|
Monte E, Furihata T, Wang G, Perea-Gil I, Wei E, Chaib H, Nair R, Guevara JV, Mares R, Cheng X, Zhuge Y, Black K, Serrano R, Dagan-Rosenfeld O, Maguire P, Mercola M, Karakikes I, Wu JC, Snyder MP. Personalized transcriptome signatures in a cardiomyopathy stem cell biobank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593618. [PMID: 38798547 PMCID: PMC11118309 DOI: 10.1101/2024.05.10.593618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.
Collapse
Affiliation(s)
- Emma Monte
- Department of Genetics, Stanford University School of Medicine
| | | | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine
| | - Isaac Perea-Gil
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Eric Wei
- Department of Genetics, Stanford University School of Medicine
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine
| | - Ramesh Nair
- Department of Genetics, Stanford University School of Medicine
| | - Julio Vicente Guevara
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Rene Mares
- Department of Genetics, Stanford University School of Medicine
| | - Xun Cheng
- Department of Genetics, Stanford University School of Medicine
| | - Yan Zhuge
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Katelyn Black
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Ricardo Serrano
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | | | - Peter Maguire
- Department of Genetics, Stanford University School of Medicine
| | - Mark Mercola
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Cardiothoracic Surgery, Stanford University School of Medicine
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine
| | | |
Collapse
|
3
|
Corona-Rivera JR, Martínez-Duncker I, Morava E, Ranatunga W, Salinas-Marin R, González-Jaimes AM, Castillo-Reyes KA, Peña-Padilla C, Bobadilla-Morales L, Corona-Rivera A, Orozco-Vela M, Brukman-Jiménez SA. TRAPPC11-CDG muscular dystrophy: Review of 54 cases including a novel patient. Mol Genet Metab 2024; 142:108469. [PMID: 38564972 DOI: 10.1016/j.ymgme.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
| | - Eva Morava
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wasantha Ranatunga
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberta Salinas-Marin
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ana María González-Jaimes
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Katia Alejandra Castillo-Reyes
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Christian Peña-Padilla
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucina Bobadilla-Morales
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico; "Dr. Enrique Corona-Rivera" Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Centre, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mireya Orozco-Vela
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sinhue Alejandro Brukman-Jiménez
- Center for Registry and Research on Congenital Anomalies (CRIAC), Division of Pediatrics, Service of Genetics and Cytogenetic Unit, "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Papaioannou P, Wallace MJ, Malhotra N, Mohler PJ, El Refaey M. Biochemical Structure and Function of TRAPP Complexes in the Cardiac System. JACC Basic Transl Sci 2023; 8:1599-1612. [PMID: 38205348 PMCID: PMC10774597 DOI: 10.1016/j.jacbts.2023.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 01/12/2024]
Abstract
Trafficking protein particle (TRAPP) is well reported to play a role in the trafficking of protein products within the Golgi and endoplasmic reticulum. Dysfunction in TRAPP has been associated with disorders in the nervous and cardiovascular systems, but the majority of literature focuses on TRAPP function in the nervous system solely. Here, we highlight the known pathways of TRAPP and hypothesize potential impacts of TRAPP dysfunction on the cardiovascular system, particularly the role of TRAPP as a guanine-nucleotide exchange factor for Rab1 and Rab11. We also review the various cardiovascular phenotypes associated with changes in TRAPP complexes and their subunits.
Collapse
Affiliation(s)
- Peter Papaioannou
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nipun Malhotra
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
5
|
Doumatey AP, Bentley AR, Akinyemi R, Olanrewaju TO, Adeyemo A, Rotimi C. Genes, environment, and African ancestry in cardiometabolic disorders. Trends Endocrinol Metab 2023; 34:601-621. [PMID: 37598069 PMCID: PMC10548552 DOI: 10.1016/j.tem.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
The past two decades have been characterized by a substantial global increase in cardiometabolic diseases, but the prevalence and incidence of these diseases and related traits differ across populations. African ancestry populations are among the most affected yet least included in research. Populations of African descent manifest significant genetic and environmental diversity and this under-representation is a missed opportunity for discovery and could exacerbate existing health disparities and curtail equitable implementation of precision medicine. Here, we discuss cardiometabolic diseases and traits in the context of African descent populations, including both genetic and environmental contributors and emphasizing novel discoveries. We also review new initiatives to include more individuals of African descent in genomics to address current gaps in the field.
Collapse
Affiliation(s)
- Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rufus Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training and Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Neurology, University College Hospital, Ibadan, Nigeria
| | - Timothy O Olanrewaju
- Division of Nephrology, Department of Medicine, University of Ilorin & University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Kistamás K, Müller A, Muenthaisong S, Lamberto F, Zana M, Dulac M, Leal F, Maziz A, Costa P, Bernotiene E, Bergaud C, Dinnyés A. Multifactorial approaches to enhance maturation of human iPSC-derived cardiomyocytes. J Mol Liq 2023; 387:122668. [DOI: 10.1016/j.molliq.2023.122668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Zhu W, Zheng Y, Liu J, Zhao C, Sun N, Qu X, Yang H. Analysis of Fatty Acid Metabolism in Fetal and Failing Hearts by Single-Cell RNA Sequencing Revealed SLC27A6 as a Critical Gene in Heart Maturation. ACTA CARDIOLOGICA SINICA 2023; 39:580-598. [PMID: 37456940 PMCID: PMC10346055 DOI: 10.6515/acs.202307_39(4).20221219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/19/2022] [Indexed: 07/18/2023]
Abstract
BACKGROUND Heart failure is associated with shifts in substrate preferences and energy insufficiency. Although cardiac metabolism has been explored at the organ level, the metabolic changes at the individual cell level remain unclear. This study employed single-cell ribonucleic acid (RNA) sequencing to investigate the cell-type-specific characteristics of gene expression related to fatty acid metabolism. METHODS Single-cell RNA sequencing data from fetal hearts were processed to analyze gene expression patterns related to fatty acid metabolism. Immunofluorescence staining and Western blotting techniques were employed to validate the expression of specific proteins. Additionally, calcium recording and contractility measurements were performed to assess the functional implications of fatty acid metabolism in cardiomyocytes. RESULTS Based on single-cell RNA sequencing data analysis, we found that a decrease in overall energy requirements underlies the downregulation of fatty acid oxidation-related genes in the later period of heart maturation and the compensatory increase of fatty acid metabolism in individual cardiomyocytes during heart failure. Furthermore, we found that solute carrier family 27 member 6 (SLC27A6), a fatty acid transport protein, is involved in cardiac maturation. SLC27A6 knockdown in human induced pluripotent stem cell-derived cardiomyocytes resulted in an immature cardiomyocyte transcriptional profile, abnormal morphology, impaired Ca2+ handling activity, and contractility. CONCLUSIONS Overall, our study offers a novel perspective for exploring cardiac fatty acid metabolism in fetal and failing hearts along with new insights into the cellular mechanism underlying fatty acid metabolic alterations in individual cardiac cells. It thus facilitates further exploration of cardiac physiology and pathology.
Collapse
Affiliation(s)
- Wenjia Zhu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Jiaying Liu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Chao Zhao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Hui Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| |
Collapse
|