1
|
Kwak MJ, Kang A, Eor J, Ryu S, Choi Y, Heo JM, Song M, Kim JN, Kim HJ, Kim Y. Dietary L-Methionine modulates the gut microbiota and improves the expression of tight junctions in an in vitro model of the chicken gastrointestinal tract. Anim Microbiome 2024; 6:14. [PMID: 38504362 PMCID: PMC10953145 DOI: 10.1186/s42523-024-00303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The poultry industry encounters a number of factors that affect growth performance and productivity; nutrition is essential for sustaining physiological status and protecting against stressors such as heat, density, and disease. The addition of vitamins, minerals, and amino acids to the diet can help restore productivity and support the body's defense mechanisms against stress. Methionine (Met) is indispensable for poultry's energy metabolism, physiology, performance, and feed utilization capacity. Through this study, we aimed to examine the physiological effects of methionine supplementation on poultry as well as alterations of intestinal microbiome. METHODS We utilized the DL- and L- form of methionine on Caenorhabditis elegans and the FIMM (Fermentor for intestine microbiota model) in-vitro digesting system. A genomic-analysis of the transcriptome confirmed that methionine supplementation can modulate growth-related physiological metabolic pathways and immune responses in the host poultry. The C. elegans model was used to assess the general health benefits of a methionine supplement for the host. RESULTS Regardless of the type or concentration of methionine, supplementation with methionine significantly increased the lifespan of C. elegans. Feed grade L-Methionine 95%, exhibited the highest lifespan performance in C. elegans. Methionine supplementation increased the expression of tight junction genes in the primary intestinal cells of both broiler and laying hens, which is directly related to immunity. Feed grade L-Methionine 95% performed similarly or even better than DL-Methionine or L-Methionine treatments with upper doses in terms of enhancing intestinal integrity. In vitro microbial cultures of healthy broilers and laying hens fed methionine revealed changes in intestinal microflora, including increased Clostridium, Bacteroides, and Oscillospira compositions. When laying hens were given feed grade L-Methionine 95% and 100%, pathogenic Campylobacter at the genus level was decreased, while commensal bacteria were increased. CONCLUSIONS Supplementation of feed grade L-Methionine, particularly L-Methionine 95%, was more beneficial to the host poultry than supplementing other source of methionine for maintaining intestinal integrity and healthy microbiome.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - JuYoung Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - Sangdon Ryu
- Divisions of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), 58762, Mokpo, Korea
| | - Youbin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - Jung Min Heo
- Department of Food Science & Nutrition, Dongseo University, Busan, 47011, Korea
| | - Minho Song
- Department of Food Science & Nutrition, Dongseo University, Busan, 47011, Korea
| | - Jong Nam Kim
- CJ Cheiljedang, 330, Dongho-ro, Jung-gu, Seoul, 04560, Korea
| | - Hyeon-Jin Kim
- CJ Cheiljedang, 330, Dongho-ro, Jung-gu, Seoul, 04560, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Zareifar P, Ahmed HM, Ghaderi P, Farahmand Y, Rahnama N, Esbati R, Moradi A, Yazdani O, Sadeghipour Y. miR-142-3p/5p role in cancer: From epigenetic regulation to immunomodulation. Cell Biochem Funct 2024; 42:e3931. [PMID: 38379239 DOI: 10.1002/cbf.3931] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs (miRNAs) play critical roles in cancer pathobiology, acting as regulators of gene expression and pivotal drivers of tumorigenesis. It is believed that miRNAs act through canonical mechanisms, involving the binding of mature miRNAs to target messenger RNAs (mRNAs) and subsequent repression of protein translation or degradation of target mRNAs. miR-142-3p/5p has been extensively studied and established as a key regulator in various malignancies. Recent discoveries have revealed miR-142-3p/5p serve as either oncogene or tumor suppressor in cancer. By targeting epigenetic factor and cancer-related signaling pathway, miR-142-3p/5p can regulate wide range of downstream genes. The immune modulatory role of miR-142-3p/5p has been shown in various cancers, which provides significant insight into immunosuppression and tumor escape from the immune response. Exosomes with miR-142-3p/5p facilitate cell communication and can affect cancer cell behavior, offering potential therapeutic, and diagnosis applications in cancer therapy. In this review, for the first time, we comprehensively summarize the current knowledge regarding mentioned functions of miR-142-3p/5p in cancer pathobiology.
Collapse
Affiliation(s)
- Parisa Zareifar
- Golestan University of Medical Science, Gorgan, Golestan, Iran
| | | | - Pouya Ghaderi
- Department of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Yasin Sadeghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Zhang X, Wu T, Zhou J, Chen X, Dong C, Guo Z, Yang R, Liang R, Feng Q, Hu R, Li Y, Ding R. Establishment and verification of prognostic model and ceRNA network analysis for colorectal cancer liver metastasis. BMC Med Genomics 2023; 16:99. [PMID: 37161577 PMCID: PMC10169504 DOI: 10.1186/s12920-023-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
OBJECTS Colorectal cancer (CRC) is one of the most common cancers in the world. Approximately two-thirds of patients with CRC will develop colorectal cancer liver metastases (CRLM) at some point in time. In this study, we aimed to construct a prognostic model of CRLM and its competing endogenous RNA (ceRNA) network. METHODS RNA-seq of CRC, CRLM and normal samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Limma was used to obtain differential expression genes (DEGs) between CRLM and CRC from sequencing data and GSE22834, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses were performed, respectively. Univariate Cox regression analysis and lasso Cox regression models were performed to screen prognostic gene features and construct prognostic models. Functional enrichment, estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) algorithm, single-sample gene set enrichment analysis, and ceRNA network construction were applied to explore potential mechanisms. RESULTS An 8-gene prognostic model was constructed by screening 112 DEGs from TCGA and GSE22834. CRC patients in the TCGA and GSE29621 cohorts were stratified into either a high-risk group or a low-risk group. Patients with CRC in the high-risk group had a significantly poorer prognosis compared to in the low-risk group. The risk score was identified as an independent predictor of prognosis. Functional analysis revealed that the risk score was closly correlated with various immune cells and immune-related signaling pathways. And a prognostic gene-associated ceRNA network was constructed that obtained 3 prognosis gene, 14 microRNAs (miRNAs) and 7 long noncoding RNAs (lncRNAs). CONCLUSIONS In conclusion, a prognostic model for CRLM identification was proposed, which could independently identify high-risk patients with low survival, suggesting a relationship between local immune status and prognosis of CRLM. Moreover, the key prognostic genes-related ceRNA network were established for the CRC investigation. Based on the differentially expressed genes between CRLM and CRC, the prognosis model of CRC patients was constructed.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Wu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinmei Zhou
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China
| | - Xiaoqiong Chen
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chao Dong
- Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhangyou Guo
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China
| | - Renfang Yang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Liang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Feng
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruixi Hu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Rong Ding
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Xishan District, No. 519, Kunzhou Road, Kunming, 650118, China.
| |
Collapse
|
5
|
Jayarathna DK, Rentería ME, Batra J, Gandhi NS. Integrative competing endogenous RNA network analyses identify novel lncRNA and genes implicated in metastatic breast cancer. Sci Rep 2023; 13:2423. [PMID: 36765262 PMCID: PMC9918521 DOI: 10.1038/s41598-023-29585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Competing endogenous RNAs (ceRNAs) have gained attention in cancer research owing to their involvement in microRNA-mediated gene regulation. Previous studies have identified ceRNA networks of individual cancers. Nevertheless, none of these studies has investigated different cancer stages. We identify stage-specific ceRNAs in breast cancer using the cancer genome atlas data. Moreover, we investigate the molecular functions and prognostic ability of ceRNAs involved in stage I-IV networks. We identified differentially expressed candidate ceRNAs using edgeR and limma R packages. A three-step analysis was used to identify statistically significant ceRNAs of each stage. Survival analysis and functional enrichment analysis were conducted to identify molecular functions and prognostic ability. We found five genes and one long non-coding RNA unique to the stage IV ceRNA network. These genes have been described in previous breast cancer studies. Genes acted as ceRNAs are enriched in cancer-associated pathways. Two, three, and three microRNAs from stages I, II, and III were prognostic from the Kaplan-Meier survival analysis. Our results reveal a set of unique ceRNAs in metastatic breast cancer. Further experimental work is required to evaluate their role in metastasis. Moreover, identifying stage-specific ceRNAs will improve the understanding of personalised therapeutics in breast cancer.
Collapse
Affiliation(s)
- Dulari K Jayarathna
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
6
|
Ma J, Song P, Liu X, Ma C, Zheng M, Ren X, Wang R, Liu W, Lu Z, Li J. Insights into the roles and driving forces of CCT3 in human tumors. Front Pharmacol 2022; 13:1005855. [PMID: 36313331 PMCID: PMC9596777 DOI: 10.3389/fphar.2022.1005855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
CCT3 played a key role in many cancers. This study aimed to further explore the characteristics of CCT3 from a pan-cancer perspective and reveal the driving forces for CCT3. By bioinformatic analysis, we found that the mRNA and protein levels of CCT3 were abnormally elevated in most tumor types and were correlated with poor prognosis. Single-cell sequencing data indicated an abnormal increase of CCT3 expression in both malignant cells and multiple immune cells. In the tumor microenvironment, CCT3 expression was negatively relevant with immune cell infiltration and immune checkpoint genes expression. In colon cancer, knockdown of CCT3 inhibited cell proliferation. Gene set enrichment analysis showed that CCT3 may be oncogenic by regulating amino acid metabolism. Furthermore, we predicted sensitive drugs for CCT3 by virtual screening and sensitivity analysis. Many driver genes such as TP53 and KRAS were essential for CCT3 overexpression. Epigenetic factors, enhancers in particular, were also critical for CCT3 expression. Additionally, we constructed the lncRNA/circRNA-miRNA-CCT3 regulatory network. Collectively, CCT3 had the potential to be a diagnostic and prognostic biomarker for multiple tumor types. CCT3 expression was relevant with an immunosuppressive tumor microenvironment. CCT3 could be a new molecular target for colon cancer. Both genetic and epigenetic factors were responsible for CCT3 expression in tumors.
Collapse
Affiliation(s)
- Jingang Ma
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgeng Ma
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Mingzhu Zheng
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Ren
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Rui Wang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wenshan Liu
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| |
Collapse
|
7
|
Chen Y, Tian Z, Hou H, Gai W. The noncoding RNAs regulating pyroptosis in colon adenocarcinoma were derived from the construction of a ceRNA network and used to develop a prognostic model. BMC Med Genomics 2022; 15:201. [PMID: 36127676 PMCID: PMC9490888 DOI: 10.1186/s12920-022-01359-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Background Noncoding RNAs (ncRNAs), pyroptosis and tumours are all hot topics in current research, but there are very limited studies on pyroptosis and its regulated ncRNAs in colon adenocarcinoma (COAD). Methods The COAD transcription profile dataset from TCGA was used for differential expression analysis. Pyroptosis-related genes (PRGs), the top 200 long noncoding RNAs (lncRNAs) and circular RNA (circRNAs) were selected from the results to construct an endogenous competitive RNA (ceRNA) network. Moreover, the expression of the ceRNAs was used for consensus cluster analysis of COAD and developing a risk model after combining clinical follow-up data by the least absolute shrinkage and selection operator method. The stability and independent prognostic ability of the risk model were evaluated. Finally, gene set enrichment analysis (GSEA) and immune score comparisons between the high-risk and low-risk groups were performed. Results There were 87 PRGs with significant differences, among which casp3/8, NLRP1/3, and IL-1α/1β were at the core of the interactions. The ceRNA network consisted of 58 lncRNAs, 6 circRNAs, 25 PRGs, and 55 microRNAs. We speculated that KCNQ1OT1-miRNAs-SQSTM1 and HSA_CIRC_0001495-miRNAs-PTEN have great potential and value in the pyroptosis mechanism of COAD. Nine RNAs were involved in the risk score, which had excellent independent prognostic ability. Survival analyses were significant between the high-risk (HR) and low-risk (LR) groups (training cohort: P < 0.001; test cohort: P = 0.037). GSEA was mainly enriched in tumour proliferation and metastasis related pathways, while differences in immune activity showed a bipolar distribution between the HR and LR groups. Conclusions The overall mechanism of pyroptosis in COAD was revealed. CeRNAs most closely related to the pyroptosis mechanism of COAD were selected and used to develop a prognostic model. The results may present new regulatory sites and potential targets for COAD pyroptosis mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01359-w.
Collapse
Affiliation(s)
- Yanfeng Chen
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China
| | - Zongbiao Tian
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China
| | - Hebin Hou
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China
| | - Wei Gai
- Department of Gastroenterology, TengZhou Central People's Hospital, Tengzhou, Shandong, China.
| |
Collapse
|