1
|
Rodriguez-Cruz UE, Ochoa-Sánchez M, Eguiarte LE, Souza V. Running against the clock: exploring microbial diversity in an extremely endangered microbial oasis in the Chihuahuan Desert. FEMS Microbiol Ecol 2025; 101:fiaf033. [PMID: 40205473 PMCID: PMC11995699 DOI: 10.1093/femsec/fiaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/22/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
The Cuatro Ciénegas Basin is a biodiversity hotspot known for its unique biodiversity. However, this ecosystem is facing severe anthropogenic threats that are drying its aquatic systems. We investigated microbial communities at three sites with different physicochemical and environmental characteristics (Pozas Rojas, Archean Domes, and the Churince system) within the basin to explore potential connections to deep aquifers and determine if the sites shared microorganisms. Utilizing 16S rRNA gene data, we identified a core microbiota between Pozas Rojas (PR) and Archean Domes (AD). Sulfur reduction appears to shape the microbial connectivity among sites, since sulfur-reducing bacteria has the highest prevalence between samples from PR and AD: Halanaerobium sp. (88.46%) and Desulfovermiculus halophilus (65%); and between the Churince system and AD: Halanaerobium sp. (63%) and D. halophilus (60%). Furthermore, metagenome-assembled genomes from Ectothiorhodospira genus were found in both AD and Churince, suggesting microbial dispersal. An important finding is that microbial diversity in the AD system declined, from 2016 to 2023 the ecosystem lost 29 microbial phyla. If this trend continues, the basin will lose most of its water, resulting in the loss of various prokaryotic lineages and potential biotechnological solutions, such as enzymes or novel antibiotics. Our findings highlighting the need for water extraction regulations to preserve the basin's biodiversity.
Collapse
Affiliation(s)
- Ulises E Rodriguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Manuel Ochoa-Sánchez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, 6200000, Chile
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, 6200000, Chile
| |
Collapse
|
2
|
Makumbi JP, Bezuidt OK, Leareng SK, Makhalanyane TP. Archaeal genomes linked to industrial wastewater and associated freshwater in South Africa. Microbiol Resour Announc 2025; 14:e0107924. [PMID: 40130930 PMCID: PMC11984125 DOI: 10.1128/mra.01079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Archaea provide important ecosystem services including the degradation of contaminants. Here, we present archaeal genomes from understudied South African wastewater treatment plants (WWTPs) and associated rivers receiving industrial effluents. Functional analysis revealed key genes implicated in heavy metal degradation, offering a valuable resource for mechanistic studies on archaeal metabolism.
Collapse
Affiliation(s)
- J. P. Makumbi
- Department of Biochemistry, Genetics and Microbiology, DSI/NRF SARChI in Marine Microbiomics, microbiome@UP, University of Pretoria, Pretoria, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - O. K. Bezuidt
- Department of Biochemistry, Genetics and Microbiology, DSI/NRF SARChI in Marine Microbiomics, microbiome@UP, University of Pretoria, Pretoria, South Africa
| | - S. K. Leareng
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - T. P. Makhalanyane
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Brunet M, Amin SA, Bodachivskyi I, Kuzhiumparambil U, Seymour JR, Raina JB. An atlas of metabolites driving chemotaxis in prokaryotes. Nat Commun 2025; 16:1242. [PMID: 39890791 PMCID: PMC11785958 DOI: 10.1038/s41467-025-56410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Chemicals inducing chemotaxis have been characterised for over 60 years across hundreds of publications. Without any synthesis of these scattered results, our current understanding of the molecules affecting prokaryotic behaviours is fragmented. Here, we examined 341 publications to assemble a comprehensive database of prokaryotic chemoeffectors, compiling the effect (attractant, repellent or neutral) of 926 chemicals previously tested and the chemotactic behaviour of 394 strains. Our analysis reveals that (i) not all chemical classes trigger chemotaxis equally, in particular, amino acids and benzenoids are much stronger attractants than carbohydrates; (ii) over one-quarter of attractants tested are not used for growth but solely act as chemotactic signals; (iii) the prokaryote's origin matters, as terrestrial strains respond to 50% more chemicals than those originating from human or marine biomes; (iv) repellents affect cell behaviour at concentrations 10-fold higher than attractants; (v) the effect of large molecules and the behaviour of bacteria other than Proteobacteria have been largely overlooked. Taken together, our findings provide a unifying view of the chemical characteristics that affect prokaryotic behaviours globally.
Collapse
Affiliation(s)
- Maéva Brunet
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Shady A Amin
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Iurii Bodachivskyi
- Department of Chemistry of Bioactive Nitrogen Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv, Ukraine
| | | | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
4
|
Bhattacharya A, Falk ID, Moss FR, Weiss TM, Tran KN, Burns NZ, Boxer SG. Structure-function relationships in pure archaeal bipolar tetraether lipids. Chem Sci 2024:d4sc03788j. [PMID: 39149219 PMCID: PMC11320390 DOI: 10.1039/d4sc03788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Archaeal bipolar tetraether lipids (BTLs) are among the most unusual lipids occurring in nature because of their presumed ability to span the entire membrane to form a monolayer structure. It is believed that because of their unique structural organization and chemical stability, BTLs offer extraordinary adaptation to archaea to thrive in the most extreme milieus. BTLs have also received considerable attention for development of novel membrane-based materials. Despite their fundamental biological significance and biotechnological interests, prior studies on pure BTLs are limited because of the difficulty to extract them in pure form from natural sources or to synthesize them chemically. Here we have utilized chemical synthesis to enable in-depth biophysical investigations on a series of chemically pure glycerol dialkyl glycerol tetraether (GDGT) lipids. The lipids self-assemble to form membrane-bound vesicles encapsulating polar molecules in aqueous media, and reconstitute a functional integral membrane protein. Structural properties of the membranes were characterized via small-angle X-ray scattering (SAXS) and cryogenic electron microscopy (cryo-EM). SAXS studies on bulk aqueous dispersions of GDGT lipids over 10-90 °C revealed lamellar and non-lamellar phases and their transitions. Next we asked whether vesicles overwhelmingly composed of a single GDGT species can undergo fusion as it is difficult to conceptualize such behavior with the assumption that such membranes have a monolayer structure. Interestingly, we observed that GDGT vesicles undergo fusion with influenza virus with lipid mixing kinetics comparable to that with vesicles composed of monopolar phospholipids. Our results suggest that GDGT membranes may consist of regions with a bilayer structure or form bilayer structures transiently which facilitate fusion and thus offer insight into how archaea may perform important physiological functions that require dynamical membrane behavior.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Stanford Center for Innovation in Global Health, Stanford University Stanford CA 94305 USA
| | - Isaac D Falk
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Frank R Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Khoi N Tran
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Noah Z Burns
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
5
|
Medina-Chávez NO, Torres-Cerda A, Chacón JM, Harcombe WR, De la Torre-Zavala S, Travisano M. Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium. Front Microbiol 2023; 14:1276438. [PMID: 38179456 PMCID: PMC10764424 DOI: 10.3389/fmicb.2023.1276438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial syntrophy, a cooperative metabolic interaction among prokaryotes, serves a critical role in shaping communities, due to the auxotrophic nature of many microorganisms. Syntrophy played a key role in the evolution of life, including the hypothesized origin of eukaryotes. In a recent exploration of the microbial mats within the exceptional and uniquely extreme Cuatro Cienegas Basin (CCB), a halophilic isolate, designated as AD140, emerged as a standout due to its distinct growth pattern. Subsequent genome sequencing revealed AD140 to be a co-culture of a halophilic archaeon from the Halorubrum genus and a marine halophilic bacterium, Marinococcus luteus, both occupying the same ecological niche. This intriguing coexistence hints at an early-stage symbiotic relationship that thrives on adaptability. By delving into their metabolic interdependence through genomic analysis, this study aims to uncover shared characteristics that enhance their symbiotic association, offering insights into the evolution of halophilic microorganisms and their remarkable adaptations to high-salinity environments.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Abigail Torres-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Jeremy M. Chacón
- Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Tirumalai MR, Sivaraman RV, Kutty LA, Song EL, Fox GE. Ribosomal Protein Cluster Organization in Asgard Archaea. ARCHAEA (VANCOUVER, B.C.) 2023; 2023:5512414. [PMID: 38314098 PMCID: PMC10833476 DOI: 10.1155/2023/5512414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 02/06/2024]
Abstract
It has been proposed that the superphylum of Asgard Archaea may represent a historical link between the Archaea and Eukarya. Following the discovery of the Archaea, it was soon appreciated that archaeal ribosomes were more similar to those of Eukarya rather than Bacteria. Coupled with other eukaryotic-like features, it has been suggested that the Asgard Archaea may be directly linked to eukaryotes. However, the genomes of Bacteria and non-Asgard Archaea generally organize ribosome-related genes into clusters that likely function as operons. In contrast, eukaryotes typically do not employ an operon strategy. To gain further insight into conservation of the r-protein genes, the genome order of conserved ribosomal protein (r-protein) coding genes was identified in 17 Asgard genomes (thirteen complete genomes and four genomes with less than 20 contigs) and compared with those found previously in non-Asgard archaeal and bacterial genomes. A universal core of two clusters of 14 and 4 cooccurring r-proteins, respectively, was identified in both the Asgard and non-Asgard Archaea. The equivalent genes in the E. coli version of the cluster are found in the S10 and spc operons. The large cluster of 14 r-protein genes (uS19-uL22-uS3-uL29-uS17 from the S10 operon and uL14-uL24-uL5-uS14-uS8-uL6-uL18-uS5-uL30-uL15 from the spc operon) occurs as a complete set in the genomes of thirteen Asgard genomes (five Lokiarchaeotes, three Heimdallarchaeotes, one Odinarchaeote, and four Thorarchaeotes). Four less conserved clusters with partial bacterial equivalents were found in the Asgard. These were the L30e (str operon in Bacteria) cluster, the L18e (alpha operon in Bacteria) cluster, the S24e-S27ae-rpoE1 cluster, and the L31e, L12..L1 cluster. Finally, a new cluster referred to as L7ae was identified. In many cases, r-protein gene clusters/operons are less conserved in their organization in the Asgard group than in other Archaea. If this is generally true for nonribosomal gene clusters, the results may have implications for the history of genome organization. In particular, there may have been an early transition to or from the operon approach to genome organization. Other nonribosomal cellular features may support different relationships. For this reason, it may be important to consider ribosome features separately.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
7
|
García-Maldonado JQ, Latisnere-Barragán H, Escobar-Zepeda A, Cadena S, Ramírez-Arenas PJ, Vázquez-Juárez R, Rojas-Contreras M, López-Cortés A. Revisiting Microbial Diversity in Hypersaline Microbial Mats from Guerrero Negro for a Better Understanding of Methanogenic Archaeal Communities. Microorganisms 2023; 11:microorganisms11030812. [PMID: 36985385 PMCID: PMC10059902 DOI: 10.3390/microorganisms11030812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Knowledge regarding the diversity of methanogenic archaeal communities in hypersaline environments is limited because of the lack of efficient cultivation efforts as well as their low abundance and metabolic activities. In this study, we explored the microbial communities in hypersaline microbial mats. Bioinformatic analyses showed significant differences among the archaeal community structures for each studied site. Taxonomic assignment based on 16S rRNA and methyl coenzyme-M reductase (mcrA) gene sequences, as well as metagenomic analysis, corroborated the presence of Methanosarcinales. Furthermore, this study also provided evidence for the presence of Methanobacteriales, Methanomicrobiales, Methanomassiliicoccales, Candidatus Methanofastidiosales, Methanocellales, Methanococcales and Methanopyrales, although some of these were found in extremely low relative abundances. Several mcrA environmental sequences were significantly different from those previously reported and did not match with any known methanogenic archaea, suggesting the presence of specific environmental clusters of methanogenic archaea in Guerrero Negro. Based on functional inference and the detection of specific genes in the metagenome, we hypothesised that all four methanogenic pathways were able to occur in these environments. This study allowed the detection of extremely low-abundance methanogenic archaea, which were highly diverse and with unknown physiology, evidencing the presence of all methanogenic metabolic pathways rather than the sheer existence of exclusively methylotrophic methanogenic archaea in hypersaline environments.
Collapse
Affiliation(s)
- José Q García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida 97310, Yucatán, Mexico
| | - Hever Latisnere-Barragán
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| | | | - Santiago Cadena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| | - Patricia J Ramírez-Arenas
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| | - Maurilia Rojas-Contreras
- Departamento de Agronomía, Universidad Autónoma de Baja California Sur, La Paz 23080, Baja California Sur, Mexico
| | - Alejandro López-Cortés
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23205, Baja California Sur, Mexico
| |
Collapse
|