1
|
Peng W, Zhang Y, Gao L, Wang S, Liu M, Sun E, Lu K, Zhang Y, Li B, Li G, Cao J, Yang M, Guo Y, Wang M, Zhang Y, Wang Z, Han Y, Fan S, Huang L. Investigation of selection signatures of dairy goats using whole-genome sequencing data. BMC Genomics 2025; 26:234. [PMID: 40069586 PMCID: PMC11899394 DOI: 10.1186/s12864-025-11437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Dairy goats, a livestock species with a long history of milk production, are essential for the economic advancement of nations, particularly in regions experiencing growth. In this study, we gathered whole-genome resequencing data of 58 goats, including 34 dairy goats and 24 wild goats (Bezoar), to explore the selection signatures linked to milk production traits using ROH (Runs of homozygosity), CLR (composite likelihood ratio), Fst (Fixation index), XP-EHH (Ex-tended haplotype homozygosity across populations) and XP-CLR(Cross-population composite likelihood ratio test) methods. Analysis of five tests of selection signatures for dairy goats revealed a total of 210 genes, with 24 genes consistently identified in at least two approaches. These genes are associated with milk fat, milk protein, and fat yield. Gene enrichment analysis highlighted important GO and KEGG pathways related to milk production, such as the "acyl-CoA metabolic process", "glycerolipid biosynthetic process", "cellular response to fatty ac-id", "hormone metabolic process", "Galactose metabolism". Additionally, genes linked to repro-duction, immune response, and environmental adaptation were identified in dairy goats. The findings from our study offer profound understanding into the critical economic features of dairy goats and offer practical guidance for the improvement and development of crossbreeding initiatives across different dairy goat breeds.
Collapse
Affiliation(s)
- Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengting Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Enrui Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Kaixin Lu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jingya Cao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou, China
| | - Yanfeng Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mengyun Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yuming Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zihan Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yan Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Shuhua Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
- Fuxi Laboratory, Zhoukou, China.
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| |
Collapse
|
2
|
Zhao F, Xie R, Fang L, Xiang R, Yuan Z, Liu Y, Wang L. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep. Evol Appl 2024; 17:e13697. [PMID: 38911262 PMCID: PMC11192971 DOI: 10.1111/eva.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/02/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024] Open
Abstract
As an invaluable Chinese sheep germplasm resource, Hu sheep are renowned for their high fertility and beautiful wavy lambskins. Their distinctive characteristics have evolved over time through a combination of artificial and natural selection. Identifying selection signatures in Hu sheep can provide a straightforward insight into the mechanism of selection and further uncover the candidate genes associated with breed-specific traits subject to selection. Here, we conducted whole-genome resequencing on 206 Hu sheep individuals, each with an approximate 6-fold depth of coverage. And then we employed three complementary approaches, including composite likelihood ratio, integrated haplotype homozygosity score and the detection of runs of homozygosity, to detect selection signatures. In total, 10 candidate genomic regions displaying selection signatures were simultaneously identified by multiple methods, spanning 88.54 Mb. After annotating, these genomic regions harbored collectively 92 unique genes. Interestingly, 32 candidate genes associated with reproduction were distributed in nine genomic regions detected. Out of them, two stood out as star candidates: BMPR1B and GNRH2, both of which have documented associations with fertility, and a HOXA gene cluster (HOXA1-5, HOXA9, HOXA10, HOXA11 and HOXA13) had also been linked to fertility. Additionally, we identified other genes that are related to hair follicle development (LAMTOR3, EEF1A2), ear size (HOXA1, KCNQ2), fat tail formation (HOXA10, HOXA11), growth and development (FAF1, CCNDBP1, GJB2, GJA3), fat deposition (ACOXL, JAZF1, HOXA3, HOXA4, HOXA5, EBF4), immune (UBR1, FASTKD5) and feed intake (DAPP1, RNF17, NPBWR2). Our results offer novel insights into the genetic mechanisms underlying the selection of breed-specific traits in Hu sheep and provide a reference for sheep genetic improvement programs.
Collapse
Affiliation(s)
- Fuping Zhao
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Rui Xie
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhusDenmark
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of EducationYangzhou UniversityYangzhouChina
| | - Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lixian Wang
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Peng W, Zhang Y, Gao L, Shi W, Liu Z, Guo X, Zhang Y, Li B, Li G, Cao J, Yang M. Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds. BMC Genomics 2024; 25:420. [PMID: 38684985 PMCID: PMC11057119 DOI: 10.1186/s12864-024-10334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.
Collapse
Affiliation(s)
- Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wanlu Shi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zi Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xinyu Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jingya Cao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| |
Collapse
|
4
|
Baazaoui I, Bedhiaf-Romdhani S, Mastrangelo S, Lenstra JA, Da Silva A, Benjelloun B, Ciani E. Refining the genomic profiles of North African sheep breeds through meta-analysis of worldwide genomic SNP data. Front Vet Sci 2024; 11:1339321. [PMID: 38487707 PMCID: PMC10938946 DOI: 10.3389/fvets.2024.1339321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.
Collapse
Affiliation(s)
- Imen Baazaoui
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Sonia Bedhiaf-Romdhani
- Laboratory of Animal and Fodder Production, National Institute of Agronomic Research of Tunisia, Ariana, Tunisia
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, Limoges, France
| | - Badr Benjelloun
- National Institute of Agronomic Research (INRA Maroc), Regional Centre of Agronomic Research, Beni Mellal, Morocco
| | - Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
5
|
Adeola AC, Bello SF, Abdussamad AM, Adedokun RAM, Olaogun SC, Abdullahi N, Mark AI, Onoja AB, Sanke OJ, Mangbon GF, Ibrahim J, Dawuda PM, Salako AE, Kdidi S, Yahyaoui MH. Single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of prion protein gene (PRNP) in Nigerian livestock species. BMC Genomics 2024; 25:177. [PMID: 38355406 PMCID: PMC10865551 DOI: 10.1186/s12864-024-10070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.
Collapse
Affiliation(s)
- Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China.
| | - Semiu F Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, 510642, Guangzhou, China
| | - Abdussamad M Abdussamad
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Rahamon A M Adedokun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Nasiru Abdullahi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Akanbi I Mark
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | | | - Jebi Ibrahim
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Maseru, South Africa
| | - Adebowale E Salako
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Samia Kdidi
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, 4119, Medenine, Tunisia
| | - Mohamed Habib Yahyaoui
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, 4119, Medenine, Tunisia
| |
Collapse
|
6
|
Blondeau Da Silva S, Mwacharo JM, Li M, Ahbara A, Muchadeyi FC, Dzomba EF, Lenstra JA, Da Silva A. IBD sharing patterns as intra-breed admixture indicators in small ruminants. Heredity (Edinb) 2024; 132:30-42. [PMID: 37919398 PMCID: PMC10799084 DOI: 10.1038/s41437-023-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.
Collapse
Affiliation(s)
| | - Joram M Mwacharo
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Menghua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulgasim Ahbara
- Animal and Veterinary Sciences, Scotlands Rural College (SRUC) and Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, EH25 9RG, Midlothian, UK
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anne Da Silva
- Faculté des Sciences et Techniques de Limoges, E2LIM, 87000, Limoges, France.
| |
Collapse
|
7
|
Adeola AC, Bello SF, Abdussamad AM, Mark AI, Sanke OJ, Onoja AB, Nneji LM, Abdullahi N, Olaogun SC, Rogo LD, Mangbon GF, Pedro SL, Hiinan MP, Mukhtar MM, Ibrahim J, Saidu H, Dawuda PM, Bala RK, Abdullahi HL, Salako AE, Kdidi S, Yahyaoui MH, Yin TT. Scrapie-associated polymorphisms of the prion protein gene (PRNP) in Nigerian native goats. Gene X 2023; 855:147121. [PMID: 36535463 DOI: 10.1016/j.gene.2022.147121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Scrapie is a fatal prion protein disease stiffly associated with single nucleotide polymorphism (SNPs) of the prion protein gene (PRNP). The prevalence of this deadly disease has been reported in small ruminants, including goats. The Nigerian goats are hardy, trypano-tolerant, and contribute to the protein intake of the increasing population. Although scrapie has been reported in Nigerian goats, there is no study on the polymorphism of the PRNP gene. Herein, we evaluated the genetic and allele distributions of PRNP polymorphism in 132 Nigerian goats and compared them with publicly available studies on scrapie-affected goats. We utilized Polyphen-2, PROVEAN and AMYCO programs to examine structural variations produced by the non-synonymous SNPs. Our study revealed 29 SNPs in Nigerian goats, of which 14 were non-synonymous, and 23 were novel. There were significant differences (P < 0.001) in the allele frequencies of PRNP codons 139, 146, 154 and 193 in Nigerian goats compared with scrapie-affected goats, except for Northern Italian goats at codon 154. Based on the prediction by Polyphen-2, R139S and N146S were 'benign', R154H was 'probably damaging', and T193I was 'possibly damaging'. In contrast, PROVEAN predicted 'neutral' for all non-synonymous SNPs, while AMYCO showed a similar amyloid propensity of PRNP for resistant haplotype and two haplotypes of Nigerian goats. Our study is the first to investigate the polymorphism of scrapie-related genes in Nigerian goats.
Collapse
Affiliation(s)
- Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China; Centre for Biotechnology Research, Bayero University, Kano, Nigeria.
| | - Semiu F Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Abdussamad M Abdussamad
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria; Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Akanbi I Mark
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lotanna M Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Nasiru Abdullahi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lawal D Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | | | | | - Manasseh P Hiinan
- Small Ruminant Section, Solomon Kesinton Agro-Allied Limited Iperu-Remo, Ogun State, Nigeria
| | - Muhammad M Mukhtar
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Jebi Ibrahim
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
| | - Hayatu Saidu
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, South Africa
| | - Rukayya K Bala
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Hadiza L Abdullahi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria; Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Adebowale E Salako
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Samia Kdidi
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, Medenine 4119, Tunisia
| | - Mohamed Habib Yahyaoui
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, Medenine 4119, Tunisia
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Anyogu DC, Shoyinka SVO, Ihedioha JI. Infection of West African dwarf rams with Trypanosoma brucei brucei and Trypanosoma congolense significantly alter serum electrolytes, redox balance, sperm parameters, and gonadal morphology. Vet Res Commun 2023; 47:17-27. [PMID: 35389159 DOI: 10.1007/s11259-022-09921-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
Abstract
Trypanotolerance of the West African dwarf (WAD) breeds may not rule out significant pathophysiological changes that may affect productivity. In this study, the effects of infection of WAD rams with Trypanosoma brucei brucei (Tbb) and Trypanosoma congolense (Tc) on their serum levels of electrolytes [calcium, phosphorus, sodium, potassium]; oxidative stress markers [superoxide dismutase (SOD), malondialdehyde (MDA)]; and sperm parameters [sperm count, motility, vitality, and morphology] were investigated. Fifteen WAD rams, assigned to 3 groups (A, B & C) of 5 rams each, were used for the study. Group A rams were infected with Tbb, while Group B rams were infected with Tc, both intraperitoneally, at the dose of 106 trypanosomes/animal. Group C rams served as the uninfected control. The infections were monitored for 70 days. Serum calcium levels were significantly (p < 0.05) lower in Tbb and Tc infected rams compared to the control throughout the study. Serum sodium was significantly (p < 0.05) higher in the Tb infected rams compared to the Tc infected and control rams on days 14 and 28 PI. Serum SOD activity decreased while MDA levels increased in both infected groups of rams. Tbb infected rams were azoospermic, while Tc infected rams had lower sperm motility, vitality and concentration, and higher number of abnormal sperm cells compared to the control. Necrotic and inflammatory lesions occurred in the testis and epididymis of both infected rams. These results suggest that despite trypanotolerance, trypanosome infections in the WAD rams significantly impact on health and reproduction.
Collapse
Affiliation(s)
- Davinson C Anyogu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu, 410002, Nigeria.
| | - Shodeinde V O Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu, 410002, Nigeria
| | - John I Ihedioha
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu, 410002, Nigeria
| |
Collapse
|
9
|
Boulangé A, Lejon V, Berthier D, Thévenon S, Gimonneau G, Desquesnes M, Abah S, Agboho P, Chilongo K, Gebre T, Fall AG, Kaba D, Magez S, Masiga D, Matovu E, Moukhtar A, Neves L, Olet PA, Pagabeleguem S, Shereni W, Sorli B, Taioe MO, Tejedor Junco MT, Yagi R, Solano P, Cecchi G. The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa. OPEN RESEARCH EUROPE 2022; 2:67. [PMID: 37645305 PMCID: PMC10445831 DOI: 10.12688/openreseurope.14759.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/23/2023]
Abstract
Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.
Collapse
Affiliation(s)
- Alain Boulangé
- CIRAD, UMR INTERTRYP, Bouaké, 01 BP 1500, Cote d'Ivoire
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Veerle Lejon
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - David Berthier
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Sophie Thévenon
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Geoffrey Gimonneau
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Dakar-Hann, BP 2057, Senegal
| | - Marc Desquesnes
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Toulouse, F-31076, France
| | - Samuel Abah
- Mission Spéciale D'Eradication des Glossines (MSEG), Ministère de l'Elevage, des Pêches et des Industries Animales, Ngaoundéré, BP 263, Cameroon
| | - Prudenciène Agboho
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, 01 BP 454, Burkina Faso
| | - Kalinga Chilongo
- Tsetse and Trypanosomosis Control Unit (TTCU), Ministry of Fisheries and Livestock, P.O Box 50197, Lusaka, 10101, Zambia
| | - Tsegaye Gebre
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), P.O Box 19917, Addis Ababa, Ethiopia
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, BP 2057, Senegal
| | - Dramane Kaba
- Institut Pierre Richet (IPR), Institut National de Santé Publique, Bouaké, 01 BP 1500, Cote d'Ivoire
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, B-1050, Belgium
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, 00100, Kenya
| | | | - Aldjibert Moukhtar
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Route de Farcha, BP 433, Chad
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, 00200, Mozambique
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Pamela A. Olet
- Kenya Tsetse and Trypanosomosis Eradication Council (KENTTEC), Nairobi, 00800, Kenya
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso – Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose (IBD-CETT), Ministère des ressources animales et halieutiques, Bobo-Dioulasso, 01 BP 1087, Burkina Faso
| | - William Shereni
- Division of Tsetse Control Services (TCD), Ministry of Lands, Agriculture, Fisheries, Water and Rural Development, P.O Box CY52, Harare, Zimbabwe
| | - Brice Sorli
- Institut d'Electronique et des Systèmes (IES), Université de Montpellier, Montpellier, F-34090, France
| | - Moeti O. Taioe
- Onderstepoort Veterinary Research, Agricultural Research Council (ARC), Pretoria, 0110, South Africa
| | | | - Rehab Yagi
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation, Khartoum, 12217, Sudan
| | - Philippe Solano
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, 00153, Italy
| |
Collapse
|
10
|
Boulangé A, Lejon V, Berthier D, Thévenon S, Gimonneau G, Desquesnes M, Abah S, Agboho P, Chilongo K, Gebre T, Fall AG, Kaba D, Magez S, Masiga D, Matovu E, Moukhtar A, Neves L, Olet PA, Pagabeleguem S, Shereni W, Sorli B, Taioe MO, Tejedor Junco MT, Yagi R, Solano P, Cecchi G. The COMBAT project: controlling and progressively minimizing the burden of vector-borne animal trypanosomosis in Africa. OPEN RESEARCH EUROPE 2022; 2:67. [PMID: 37645305 PMCID: PMC10445831 DOI: 10.12688/openreseurope.14759.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 08/31/2023]
Abstract
Vector-borne diseases affecting livestock have serious impacts in Africa. Trypanosomosis is caused by parasites transmitted by tsetse flies and other blood-sucking Diptera. The animal form of the disease is a scourge for African livestock keepers, is already present in Latin America and Asia, and has the potential to spread further. A human form of the disease also exists, known as human African trypanosomosis or sleeping sickness. Controlling and progressively minimizing the burden of animal trypanosomosis (COMBAT) is a four-year research and innovation project funded by the European Commission, whose ultimate goal is to reduce the burden of animal trypanosomosis (AT) in Africa. The project builds on the progressive control pathway (PCP), a risk-based, step-wise approach to disease reduction or elimination. COMBAT will strengthen AT control and prevention by improving basic knowledge of AT, developing innovative control tools, reinforcing surveillance, rationalizing control strategies, building capacity, and raising awareness. Knowledge gaps on disease epidemiology, vector ecology and competence, and biological aspects of trypanotolerant livestock will be addressed. Environmentally friendly vector control technologies and more effective and adapted diagnostic tools will be developed. Surveillance will be enhanced by developing information systems, strengthening reporting, and mapping and modelling disease risk in Africa and beyond. The socio-economic burden of AT will be assessed at a range of geographical scales. Guidelines for the PCP and harmonized national control strategies and roadmaps will be developed. Gender equality and ethics will be pivotal in all project activities. The COMBAT project benefits from the expertise of African and European research institutions, national veterinary authorities, and international organizations. The project consortium comprises 21 participants, including a geographically balanced representation from 13 African countries, and it will engage a larger number of AT-affected countries through regional initiatives.
Collapse
Affiliation(s)
- Alain Boulangé
- CIRAD, UMR INTERTRYP, Bouaké, 01 BP 1500, Cote d'Ivoire
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Veerle Lejon
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - David Berthier
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Sophie Thévenon
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
| | - Geoffrey Gimonneau
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Dakar-Hann, BP 2057, Senegal
| | - Marc Desquesnes
- CIRAD, IRD, INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
- CIRAD, UMR INTERTRYP, Toulouse, F-31076, France
| | - Samuel Abah
- Mission Spéciale D'Eradication des Glossines (MSEG), Ministère de l'Elevage, des Pêches et des Industries Animales, Ngaoundéré, BP 263, Cameroon
| | - Prudenciène Agboho
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, 01 BP 454, Burkina Faso
| | - Kalinga Chilongo
- Tsetse and Trypanosomosis Control Unit (TTCU), Ministry of Fisheries and Livestock, P.O Box 50197, Lusaka, 10101, Zambia
| | - Tsegaye Gebre
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), P.O Box 19917, Addis Ababa, Ethiopia
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, BP 2057, Senegal
| | - Dramane Kaba
- Institut Pierre Richet (IPR), Institut National de Santé Publique, Bouaké, 01 BP 1500, Cote d'Ivoire
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, B-1050, Belgium
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, 00100, Kenya
| | | | - Aldjibert Moukhtar
- Institut de Recherche en Elevage pour le Développement (IRED), N'Djamena, Route de Farcha, BP 433, Chad
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, 00200, Mozambique
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Pamela A. Olet
- Kenya Tsetse and Trypanosomosis Eradication Council (KENTTEC), Nairobi, 00800, Kenya
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso – Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose (IBD-CETT), Ministère des ressources animales et halieutiques, Bobo-Dioulasso, 01 BP 1087, Burkina Faso
| | - William Shereni
- Division of Tsetse Control Services (TCD), Ministry of Lands, Agriculture, Fisheries, Water and Rural Development, P.O Box CY52, Harare, Zimbabwe
| | - Brice Sorli
- Institut d'Electronique et des Systèmes (IES), Université de Montpellier, Montpellier, F-34090, France
| | - Moeti O. Taioe
- Onderstepoort Veterinary Research, Agricultural Research Council (ARC), Pretoria, 0110, South Africa
| | | | - Rehab Yagi
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation, Khartoum, 12217, Sudan
| | - Philippe Solano
- CIRAD, IRD, UMR INTERTRYP, Univ of Montpellier, Montpellier, F-34398, France
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), Rome, 00153, Italy
| |
Collapse
|