1
|
Alkan I, Durkut B, Ucak M, Bozkurt M, Canat HL, Celik-Ozenci C. Uncovering the Penile Clock: Expression of Molecular Clock Proteins in Human Penile Cavernous Tissue. World J Mens Health 2024; 42:797-809. [PMID: 38311375 PMCID: PMC11439802 DOI: 10.5534/wjmh.230136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 02/10/2024] Open
Abstract
PURPOSE To evaluate the expression of core molecular clock genes/proteins in penile cavernous tissue from healthy male subjects and to determine whether their expression has circadian variation. MATERIALS AND METHODS Corpus cavernosum biopsy samples were obtained from 10 healthy males with penile deviation or fracture who underwent surgical intervention during the day and night. The daytime group (n=5) underwent corpus cavernosum tissue sampling during zeitgeber time (ZT) 8-12, while the nighttime group (n=5) underwent sampling during ZT 20-24. The expression and localization of BMAL1, CLOCK, PER1, PER2, PER3, CRY1, and CRY2 proteins were analyzed using immunohistochemistry and quantified using H-score analysis. RT-qPCR analysis was performed to assess the expression of core molecular clock genes in the corpus cavernosum tissue of 5 additional daytime patients. RESULTS The expression of core molecular clock proteins was detected in vascular endothelial cells (VECs) and smooth muscle cells (SMCs) in corpus cavernosum during daytime and nighttime. BMAL1 exhibited the most significant nuclear expression during daytime in both cell types, whereas its expression decreased significantly at night. In VECs, a significant decrease in the nuclear expression of CRY1 was observed at night. In SMCs, a significant decrease in the cytoplasmic expression of PER3 was observed at night. The expression patterns of the core molecular clock genes were ascertained through a RT-qPCR analysis. CONCLUSIONS Our research provides compelling evidence that core molecular clock genes are distinctly expressed in penile tissue in humans. Furthermore, we observed the expression of molecular clock proteins within the VECs and SMCs of the corpus cavernosum, with BMAL1 being the most prominently expressed. The discovery of core molecular clock genes in penile tissue, as well as proteins within the SMCs and VECs of the corpus cavernosum, introduces the potential significance of the molecular clock mechanism in the physiology of penile erection.
Collapse
Affiliation(s)
- Ilter Alkan
- Department of Urology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Begum Durkut
- Programme of Reproductive Medicine, Graduate School of Health Sciences, Koç University, Istanbul, Turkey
| | - Melike Ucak
- Programme of Reproductive Medicine, Graduate School of Health Sciences, Koç University, Istanbul, Turkey
| | - Muammer Bozkurt
- Department of Urology, Cam and Sakura City Hospital, Istanbul, Turkey
| | - Halil Lutfi Canat
- Department of Urology, Cam and Sakura City Hospital, Istanbul, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koç University, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
2
|
Cheng H, Zhong D, Tan Y, Huang M, Xijie S, Pan H, Yang Z, Huang F, Li F, Tang Q. Advancements in research on the association between the biological CLOCK and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1320605. [PMID: 38872971 PMCID: PMC11169578 DOI: 10.3389/fendo.2024.1320605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Due to the Earth's rotation, the natural environment exhibits a light-dark diurnal cycle close to 24 hours. To adapt to this energy intake pattern, organisms have developed a 24-hour rhythmic diurnal cycle over long periods, known as the circadian rhythm, or biological clock. With the gradual advancement of research on the biological clock, it has become increasingly evident that disruptions in the circadian rhythm are closely associated with the occurrence of type 2 diabetes (T2D). To further understand the progress of research on T2D and the biological clock, this paper reviews the correlation between the biological clock and glucose metabolism and analyzes its potential mechanisms. Based on this, we discuss the potential factors contributing to circadian rhythm disruption and their impact on the risk of developing T2D, aiming to explore new possible intervention measures for the prevention and treatment of T2D in the future. Under the light-dark circadian rhythm, in order to adapt to this change, the human body forms an internal biological clock involving a variety of genes, proteins and other molecules. The main mechanism is the transcription-translation feedback loop centered on the CLOCK/BMAL1 heterodimer. The expression of important circadian clock genes that constitute this loop can regulate T2DM-related blood glucose traits such as glucose uptake, fat metabolism, insulin secretion/glucagon secretion and sensitivity in various peripheral tissues and organs. In addition, sleep, light, and dietary factors under circadian rhythms also affect the occurrence of T2DM.
Collapse
Affiliation(s)
- Hui Cheng
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dayuan Zhong
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
| | - Yimei Tan
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Foshan, China
| | - Menghe Huang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Foshan, China
| | - Sun Xijie
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hong Pan
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zixian Yang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Fangmei Huang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Feifan Li
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
- Institute of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qizhi Tang
- Nanhai Hospital of Traditional Chinese Medicine, Jinan University, Foshan, China
| |
Collapse
|
3
|
Lee DY, Jung I, Park SY, Yu JH, Seo JA, Kim KJ, Kim NH, Yoo HJ, Kim SG, Choi KM, Baik SH, Kim NH. Attention to Innate Circadian Rhythm and the Impact of Its Disruption on Diabetes. Diabetes Metab J 2024; 48:37-52. [PMID: 38173377 PMCID: PMC10850272 DOI: 10.4093/dmj.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Novel strategies are required to reduce the risk of developing diabetes and/or clinical outcomes and complications of diabetes. In this regard, the role of the circadian system may be a potential candidate for the prevention of diabetes. We reviewed evidence from animal, clinical, and epidemiological studies linking the circadian system to various aspects of the pathophysiology and clinical outcomes of diabetes. The circadian clock governs genetic, metabolic, hormonal, and behavioral signals in anticipation of cyclic 24-hour events through interactions between a "central clock" in the suprachiasmatic nucleus and "peripheral clocks" in the whole body. Currently, circadian rhythmicity in humans can be subjectively or objectively assessed by measuring melatonin and glucocorticoid levels, core body temperature, peripheral blood, oral mucosa, hair follicles, rest-activity cycles, sleep diaries, and circadian chronotypes. In this review, we summarized various circadian misalignments, such as altered light-dark, sleep-wake, rest-activity, fasting-feeding, shift work, evening chronotype, and social jetlag, as well as mutations in clock genes that could contribute to the development of diabetes and poor glycemic status in patients with diabetes. Targeting critical components of the circadian system could deliver potential candidates for the treatment and prevention of type 2 diabetes mellitus in the future.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyeong Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- BK21 FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Korea
| |
Collapse
|
4
|
Zhang-Sun ZY, Xu XZ, Escames G, Lei WR, Zhao L, Zhou YZ, Tian Y, Ren YN, Acuña-Castroviejo D, Yang Y. Targeting NR1D1 in organ injury: challenges and prospects. Mil Med Res 2023; 10:62. [PMID: 38072952 PMCID: PMC10712084 DOI: 10.1186/s40779-023-00495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear receptor subfamily 1, group D, member 1 (NR1D1, also known as REV-ERBα) belongs to the nuclear receptor (NR) family, and is a heme-binding component of the circadian clock that consolidates circadian oscillators. In addition to repressing the transcription of multiple clock genes associated with circadian rhythms, NR1D1 has a wide range of downstream target genes that are intimately involved in many physiopathological processes, including autophagy, immunity, inflammation, metabolism and aging in multiple organs. This review focuses on the pivotal role of NR1D1 as a key transcription factor in the gene regulatory network, with particular emphasis on the milestones of the latest discoveries of NR1D1 ligands. NR1D1 is considered as a promising drug target for treating diverse diseases and may contribute to research on innovative biomarkers and therapeutic targets for organ injury-related diseases. Further research on NR1D1 ligands in prospective human trials may pave the way for their clinical application in many organ injury-related disorders.
Collapse
Affiliation(s)
- Zi-Yin Zhang-Sun
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Xue-Zeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Germaine Escames
- Biomedical Research Center, Department of Physiology, Faculty of Medicine, Institute of Biotechnology, Technological Park of Health Sciences, University of Granada, 18016, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, San Cecilio University Hospital, 18016, Granada, Spain
| | - Wang-Rui Lei
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ya-Zhe Zhou
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Ya-Nan Ren
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Department of Physiology, Faculty of Medicine, Institute of Biotechnology, Technological Park of Health Sciences, University of Granada, 18016, Granada, Spain.
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, San Cecilio University Hospital, 18016, Granada, Spain.
- UGC of Clinical Laboratories, San Cecilio Clinical University Hospital, 18016, Granada, Spain.
| | - Yang Yang
- Department of Cardiology, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine , Northwest University, Xi'an, 710069, China.
| |
Collapse
|
5
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
He M, Liu K, Cao J, Chen Q. An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies. Rev Endocr Metab Disord 2023; 24:585-610. [PMID: 36792803 DOI: 10.1007/s11154-022-09783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 02/17/2023]
Abstract
Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.
Collapse
Affiliation(s)
- Mengchao He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kun Liu
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, 510630, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Shirakawa Y, Ohno SN, Yamagata KA, Kuramoto E, Oda Y, Nakamura TJ, Nakamura W, Sugimura M. Circadian rhythm of PERIOD2::LUCIFERASE expression in the trigeminal ganglion of mice. Front Neurosci 2023; 17:1142785. [PMID: 37056311 PMCID: PMC10086191 DOI: 10.3389/fnins.2023.1142785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionThe trigeminal nerve conveys delicate sensations such as warmth, pain, and tactile pressure in the oral and facial regions, and most trigeminal afferent cell bodies are located in the trigeminal ganglion. Our previous study has shown that sensations in trigeminal nerve innervated areas, specifically in the maxillofacial region, exhibit diurnal variation and that sensitivity changes time-dependently. In this study, we aimed to clarify the rhythm of expression of clock gene in the trigeminal ganglion of mice to elucidate the mechanism of circadian regulation in the same area.MethodsImmunohistochemistry examined the expression of the PER2 protein in the suprachiasmatic nucleus and trigeminal ganglion of wild-type mice. To measure gene expression as bioluminescence, PERIOD2::LUCIFERASE knock-in (PER2::LUC) mice were used. Unilateral trigeminal ganglion and brain sections including the suprachiasmatic nucleus were incubated ex vivo. Bioluminescence levels were then measured using a highly sensitive photodetector. The same experiments were then conducted with Cry1 gene-deficient (Cry1−/−) or Cry2 gene-deficient (Cry2−/−) mice.ResultsIn the trigeminal ganglion, immunohistochemistry localized PER2 protein expression within the neuronal cell body. Mouse trigeminal ganglion ex vivo tissues showed distinct circadian oscillations in PER2::LUC levels in all genotypes, wild-type, Cry1−/−, and Cry2−/−. The period was shorter in the trigeminal ganglion than in the suprachiasmatic nucleus; it was shorter in Cry1−/− and longer in Cry2−/− mice than in the wild-type mice.ConclusionThe expression of Per2 in neurons of the trigeminal ganglion in ex vivo culture and the oscillation in a distinct circadian rhythm suggests that the trigeminal ganglion is responsible for the relay of sensory inputs and temporal gating through autonomous circadian oscillations.
Collapse
Affiliation(s)
- Yukie Shirakawa
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi N. Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- *Correspondence: Sachi N. Ohno,
| | - Kanae A. Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiaki Oda
- Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro J. Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Wataru Nakamura
- Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Mitsutaka Sugimura,
| |
Collapse
|
8
|
Liu C, Li S, Ji S, Zhang J, Zheng F, Guan Y, Yang G, Chen L. Proximal tubular Bmal1 protects against chronic kidney injury and renal fibrosis by maintaining of cellular metabolic homeostasis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166572. [PMID: 36252941 DOI: 10.1016/j.bbadis.2022.166572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine β-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.
Collapse
Affiliation(s)
- Chengcheng Liu
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuyao Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites 2022; 13:metabo13010060. [PMID: 36676985 PMCID: PMC9863434 DOI: 10.3390/metabo13010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of apnea and hypopnea during sleep. It is associated with various cardiovascular and metabolic complications, including type 2 diabetes mellitus (T2DM) and obesity. Many pathways can be responsible for T2DM development in OSA patients, e.g., those related to HIF-1 and SIRT1 expression. Moreover, epigenetic mechanisms, such as miRNA181a or miRNA199, are postulated to play a pivotal role in this link. It has been proven that OSA increases the occurrence of circadian clock disruption, which is also a risk factor for metabolic disease development. Circadian clock disruption impairs the metabolism of glucose, lipids, and the secretion of bile acids. Therefore, OSA-induced circadian clock disruption may be a potential, complex, underlying pathway involved in developing and exacerbating metabolic diseases among OSA patients. The current paper summarizes the available information pertaining to the relationship between OSA and circadian clock disruption in the context of potential mechanisms leading to metabolic disorders.
Collapse
|
10
|
Chen H, Tao Y, Li MD, Gu Y, Yang J, Wu Y, Yu D, Yuan C. Temporal patterns of energy intake and cognitive function and its decline: a community-based cohort study in China. LIFE METABOLISM 2022; 1:94-97. [PMID: 39872687 PMCID: PMC11749483 DOI: 10.1093/lifemeta/loac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 07/03/2022] [Indexed: 01/30/2025]
Affiliation(s)
- Hui Chen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Tao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuxuan Gu
- Department of Social Security, Center for Gerontology Research, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jiaxi Yang
- Bia-Echo Asia Centre for Reproductive Longevity & Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - You Wu
- Institute for Hospital Management, Tsinghua University, Beijing, China
| | - Dongmei Yu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
11
|
Using Microbiome-Based Approaches to Deprogram Chronic Disorders and Extend the Healthspan following Adverse Childhood Experiences. Microorganisms 2022; 10:microorganisms10020229. [PMID: 35208684 PMCID: PMC8879770 DOI: 10.3390/microorganisms10020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Adverse childhood experiences (ACEs), which can include child trafficking, are known to program children for disrupted biological cycles, premature aging, microbiome dysbiosis, immune-inflammatory misregulation, and chronic disease multimorbidity. To date, the microbiome has not been a major focus of deprogramming efforts despite its emerging role in every aspect of ACE-related dysbiosis and dysfunction. This article examines: (1) the utility of incorporating microorganism-based, anti-aging approaches to combat ACE-programmed chronic diseases (also known as noncommunicable diseases and conditions, NCDs) and (2) microbiome regulation of core systems biology cycles that affect NCD comorbid risk. In this review, microbiota influence over three key cyclic rhythms (circadian cycles, the sleep cycle, and the lifespan/longevity cycle) as well as tissue inflammation and oxidative stress are discussed as an opportunity to deprogram ACE-driven chronic disorders. Microbiota, particularly those in the gut, have been shown to affect host–microbe interactions regulating the circadian clock, sleep quality, as well as immune function/senescence, and regulation of tissue inflammation. The microimmunosome is one of several systems biology targets of gut microbiota regulation. Furthermore, correcting misregulated inflammation and increased oxidative stress is key to protecting telomere length and lifespan/longevity and extending what has become known as the healthspan. This review article concludes that to reverse the tragedy of ACE-programmed NCDs and premature aging, managing the human holobiont microbiome should become a routine part of healthcare and preventative medicine across the life course.
Collapse
|
12
|
Scapoli C, Ziliotto N, Lunghi B, Menegatti E, Salvi F, Zamboni P, Baroni M, Mascoli F, Bernardi F, Marchetti G. Combination of Genomic and Transcriptomic Approaches Highlights Vascular and Circadian Clock Components in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010310. [PMID: 35008743 PMCID: PMC8745220 DOI: 10.3390/ijms23010310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Aiming at exploring vascular components in multiple sclerosis (MS) with brain outflow disturbance, we combined transcriptome analysis in MS internal jugular vein (IJV) wall with WES in MS families with vertical transmission of disease. Main results were the differential expression in IJV wall of 16 MS-GWAS genes and of seven genes (GRIN2A, GRIN2B, IL20RB, IL26, PER3, PITX2, and PPARGC1A) not previously indicated by GWAS but encoding for proteins functionally interacting with MS candidate gene products. Strikingly, 22/23 genes have been previously associated with vascular or neuronal traits/diseases, nine encoded for transcriptional factors/regulators and six (CAMK2G, GRIN2A, GRIN2B, N1RD1, PER3, PPARGC1A) for circadian entrainment/rhythm components. Among the WES low-frequency (MAF ≤ 0.04) SNPs (n = 7) filtered in the 16 genes, the NR1D1 rs17616365 showed significantly different MAF in the Network for Italian Genomes affected cohort than in the 1000 Genome Project Tuscany samples. This pattern was also detected in five nonintronic variants (GRIN2B rs1805482, PER3 rs2640909, PPARGC1A rs2970847, rs8192678, and rs3755863) in genes coding for functional partners. Overall, the study proposes specific markers and low-frequency variants that might help (i) to understand perturbed biological processes in vascular tissues contributing to MS disease, and (ii) to characterize MS susceptibility genes for functional association with disease-pathways.
Collapse
Affiliation(s)
- Chiara Scapoli
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Nicole Ziliotto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Barbara Lunghi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Erica Menegatti
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Fabrizio Salvi
- Center for Immunological and Rare Neurological Diseases, IRCCS of Neurological Sciences, Bellaria Hospital, 40139 Bologna, Italy;
| | - Paolo Zamboni
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Marcello Baroni
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Francesco Mascoli
- Unit of Vascular and Endovascular Surgery, S. Anna University-Hospital, 44124 Ferrara, Italy;
| | - Francesco Bernardi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
- Correspondence: ; Tel.: +39-0532-974425
| | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|