1
|
Alrumaihi F, Babiker AY, Khan A. Lipid-Based Nanoformulations of [6]-Gingerol for the Chemoprevention of Benzo[a] Pyrene-Induced Lung Carcinogenesis: Preclinical Evidence. Pharmaceuticals (Basel) 2025; 18:574. [PMID: 40284009 PMCID: PMC12030401 DOI: 10.3390/ph18040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: [6]-Gingerol ([6]-G), a bioactive compound derived from Zingiber officinale (ginger), exhibits strong anticancer potential but is hindered by poor aqueous solubility and low bioavailability. This study aimed to develop and evaluate PEGylated liposomal [6]-G (6-G-Lip) to enhance its stability, bioavailability, and chemopreventive efficacy in benzo[a]pyrene (BaP)-induced lung carcinogenesis. Methods: 6-G-Lip was synthesized using a modified thin-film hydration technique and characterized for size, polydispersity index (PDI), zeta potential, encapsulation efficiency (EE%), and release kinetics. The chemopreventive effects were assessed in BaP-induced lung cancer in Swiss albino mice, with prophylactic 6-G-Lip administration from two weeks before BaP exposure through 21 weeks. Cancer biomarkers, antioxidant enzyme activity, reactive oxygen species (ROS) generation, induction of apoptosis, and histopathological alterations were analyzed. Results: 6-G-Lip exhibited a particle size of 129.7 nm, a polydispersity index (PDI) of 0.16, a zeta potential of -18.2 mV, and an encapsulation efficiency (EE%) of 91%, ensuring stability and effective drug loading. The formulation exhibited a controlled release profile, with 26.5% and 47.5% of [6]-G released in PBS and serum, respectively, at 72 h. 6-G-Lip significantly lowered cancer biomarkers, restored antioxidant defenses (SOD: 5.60 U/min/mg protein; CAT: 166.66 μm H2O2/min/mg protein), reduced lipid peroxidation (MDA: 3.3 nm/min/mg protein), and induced apoptosis (42.2%), highlighting its chemopreventive efficacy. Conclusions: This study is the first to prepare, characterize, and evaluate PEGylated [6]-G-Lip for the chemoprevention of lung cancer. It modulates oxidative stress, restores biochemical homeostasis, and selectively induces apoptosis. These findings support 6-G-Lip as a promising nanotherapeutic strategy for cancer prevention.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (A.Y.B.)
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Long-Mira E, Bontoux C, Rignol G, Hofman V, Lassalle S, Benzaquen J, Boutros J, Lalvée-Moret S, Zahaf K, Lespinet-Fabre V, Bordone O, Maistre S, Bonnetaud C, Cohen C, Berthet JP, Marquette CH, Vouret-Craviari V, Ilié M, Hofman P. Exploring the Expression of CD73 in Lung Adenocarcinoma with EGFR Genomic Alterations. Cancers (Basel) 2025; 17:1034. [PMID: 40149368 PMCID: PMC11941413 DOI: 10.3390/cancers17061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Immune checkpoint inhibitors (ICIs) benefit some lung cancer patients, but their efficacy is limited in advanced lung adenocarcinoma (LUAD) with EGFR mutations (EGFRm), largely due to a non-immunogenic tumour microenvironment (TME). Furthermore, EGFRm LUAD patients often experience increased toxicity with ICIs. CD73, an ectonucleotidase involved in adenosine production, promotes tumour immune evasion and could represent a novel therapeutic target. This study investigates CD73 expression in LUAD with EGFR alterations and its clinico-pathological correlations. METHODS CD73 expression in tumour (CD73TC) and stromal (CD73SC) cells was assessed in 76 treatment-naive LUAD patients using immunohistochemistry (IHC) (D7F9A clone) alongside IHC PD-L1 (22C3 clone). EGFR alterations were identified by molecular sequencing and FISH. Event-free survival (EFS) was analysed based on CD73TC expression. RESULTS CD73TC expression was observed in 66% of cases, with high expression (Tumour Proportion Score > 50%) correlating with improved EFS (p = 0.045). CD73TC and PD-L1 expression were not significantly correlated (p = 0.44), although a weak inverse trend was observed. CD73SC expression was detected in 18% of cases, predominantly in early-stage (p = 0.037), PD-L1-negative (p = 0.030), and non-EGFR-amplified (p = 0.0018) tumours. No significant associations were found with disease stage, histological subtype, EGFR mutation type, and amplification. CONCLUSIONS CD73 expression in EGFRm LUAD is heterogeneous and associated with diverse TME profiles. These findings support the potential of CD73 as a predictive biomarker and therapeutic target, highlighting its clinical relevance in EGFRm LUAD.
Collapse
Affiliation(s)
- Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Guylène Rignol
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Jonathan Benzaquen
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Jacques Boutros
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Salomé Lalvée-Moret
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Virginie Lespinet-Fabre
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Olivier Bordone
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Sophia Maistre
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
| | - Charlotte Cohen
- Department of Thoracic Surgery, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (C.C.); (J.-P.B.)
| | - Jean-Philippe Berthet
- Department of Thoracic Surgery, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (C.C.); (J.-P.B.)
| | - Charles-Hugo Marquette
- Department of Thoracic Oncology, IHU RespirERA Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06100 Nice, France; (J.B.); (J.B.); (C.-H.M.)
| | - Valerie Vouret-Craviari
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, IHU RespirERA, Biobank Côte d’Azur BB-0033-00025, FHU OncoAge, Centre Hospitalier Universitaire de Nice, 06000 Nice, France; (E.L.-M.); (C.B.); (G.R.); (V.H.); (S.L.); (M.I.)
- Institute for Research on Cancer and Aging, Team 4, Inserm U1081, CNRS UMR 7413, Université Côte d’Azur, 06000 Nice, France;
| |
Collapse
|
3
|
Parmar G, Chudasama JM, Shah A, Aundhia C, Kardani S. Targeting cell cycle arrest in breast cancer by phytochemicals from Caryto urens L. fruit ethyl acetate fraction: in silico and in vitro validation. J Ayurveda Integr Med 2025; 16:101095. [PMID: 40081286 PMCID: PMC11932863 DOI: 10.1016/j.jaim.2024.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Caryota urens, also known as Shivjata, has been documented in ancient Indian texts for its therapeutic benefits, addressing conditions from seminal weakness to gastric ulcers. This study aims to investigate its contemporary medicinal potential in treating breast cancer. OBJECTIVES The study focuses on exploring the therapeutic potential of Caryota urens fruit against breast cancer, specifically targeting cell cycle genes CDK1, CDC25A, and PLK1 through bioinformatics, network pharmacology, and in vitro validation. MATERIALS AND METHODS Using mass spectrometry and nuclear magnetic resonance (NMR), 60 key phytoconstituents from Caryota urens fruit were identified. Bioinformatics analysis, integrating Gene Cards and GEO databases, 15,474 breast cancer-associated genes focusing on the HR+/HER2-subtype were identified. Molecular docking and qPCR validated the interactions of key phytoconstituents, particularly Episesamin, with CDK1, CDC25A, and PLK1. In vitro studies were conducted on the MCF7 cell line, supplemented by ROC and survival analyses to evaluate diagnostic and therapeutic potential. RESULTS The bioinformatics analysis identified CDK1, CDC25A, and PLK1 as pivotal genes regulating cell cycle progression and breast cancer tumorigenesis. Network pharmacology and in vitro studies indicated that phytoconstituents, especially Episesamin, downregulated these genes in breast cancer cells. Molecular docking and qPCR confirmed these interactions, and ROC and survival analyses underscored their diagnostic and therapeutic significance. CONCLUSIONS This study suggests that Caryota urens fruit extract, particularly Episesamin, may inhibit breast cancer metastasis by downregulating CDK1, CDC25A, and PLK1, offering promising new strategies for targeting the cell cycle in breast cancer and emphasizing the value of integrating bioinformatics with experimental methods in cancer research.
Collapse
Affiliation(s)
- Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Jay Mukesh Chudasama
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Sunil Kardani
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
4
|
Gao H, Zhang T, Li K, Li X. CD73: a new immune checkpoint for leukemia treatment. Front Immunol 2025; 16:1486868. [PMID: 40114928 PMCID: PMC11922907 DOI: 10.3389/fimmu.2025.1486868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Recent studies on the pathogenesis of leukemia have led to remarkable advances in disease treatment. Numerous studies have shown the potential and viability of immune responses against leukemia. In the classical pathway, this process is often initiated by the upstream activity of CD39, which hydrolyzes extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to AMP. Subsequently, CD73 acts on AMP to generate adenosine, contributing to an immunosuppressive microenvironment. However, CD73 can also utilize substrates derived from other molecules through the non-canonical NAD+ pathway, specifically via the CD38/CD203a/CD73 axis, further enhancing adenosine production and facilitating immune escape. Targeting CD73 has shown potential in disrupting these immunosuppressive pathways, thereby enhancing anti-leukemic immune responses and improving patient outcomes. Inhibiting CD73 not only reduces the levels of immunosuppressive adenosine but also increases the efficacy of existing immunotherapies, such as PD-1/PD-L1 inhibitors, making it a versatile therapeutic target in leukemia treatment. This review discusses the potential of CD73 as a therapeutic target and emphasizes its unique position in the immune escape mechanism of leukemia. Moreover, this review provides an overview of the current research progress and future trends, emphasizing the clinical significance of targeting CD73 and other potential therapeutic strategies in leukemia.
Collapse
Affiliation(s)
- Huan Gao
- Marine College, Shandong University, Weihai, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
5
|
Van Kerkhove O, Verfaillie S, Maes B, Cuppens K. The Adenosinergic Pathway in Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3142. [PMID: 39335114 PMCID: PMC11430550 DOI: 10.3390/cancers16183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-(L)1 and CTLA-4 have revolutionized the systemic treatment of non-small cell lung cancer (NSCLC), achieving impressive results. However, long-term clinical benefits are only seen in a minority of patients. Extensive research is being conducted on novel potential immune checkpoints and the mechanisms underlying ICI resistance. The tumor microenvironment (TME) plays a critical role in modulating the immune response and influencing the efficacy of ICIs. The adenosinergic pathway and extracellular adenosine (eADO) are potential targets to improve the response to ICIs in NSCLC patients. First, this review delves into the adenosinergic pathway and the impact of adenosine within the TME. Second, we provide an overview of relevant preclinical and clinical data on molecules targeting this pathway, particularly focusing on NSCLC.
Collapse
Affiliation(s)
- Olivier Van Kerkhove
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
| | - Saartje Verfaillie
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
| | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Department of Laboratory Medicine, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
- Faculty of Medicine and Life Sciences-LCRC, Hasselt University, 3590 Diepenbeek, Belgium
| | - Kristof Cuppens
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
- Faculty of Medicine and Life Sciences-LCRC, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
6
|
Wu J, Li W, Zhang X, Shi F, Jia Q, Wang Y, Shi Y, Wu S, Wang X. Expression and potential molecular mechanism of TOP2A in metastasis of non-small cell lung cancer. Sci Rep 2024; 14:12228. [PMID: 38806610 PMCID: PMC11133405 DOI: 10.1038/s41598-024-63055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
DNA topoisomerase II alpha (TOP2A) expression, gene alterations, and enzyme activity have been studied in various malignant tumors. Abnormal elevation of TOP2A expression is considered to be related to the development of non-small cell lung cancer (NSCLC). However, its association with tumor metastasis and its mode of action remains unclear. Bioinformatics, real-time quantitative PCR, immunohistochemistry and immunoblotting were used to detect TOP2A expression in NSCLC tissues and cells. Cell migration and invasion assays as well as cytoskeletal staining were performed to analyze the effects of TOP2A on the motility, migration and invasion ability of NSCLC cells. Cell cycle and apoptosis assays were used to verify the effects of TOP2A on apoptosis as well as cycle distribution in NSCLC. TOP2A expression was considerably upregulated in NSCLC and significantly correlated with tumor metastasis and the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC. Additionally, by interacting with the classical ligand Wnt3a, TOP2A may trigger the canonical Wnt signaling pathway in NSCLC. These observations suggest that TOP2A promotes EMT in NSCLC by activating the Wnt/β-catenin signaling pathway and positively regulates malignant events in NSCLC, in addition to its significant association with tumor metastasis. TOP2A promotes the metastasis of NSCLC by stimulating the canonical Wnt signaling pathway and inducing EMT. This study further elucidates the mechanism of action of TOP2A, suggesting that it might be a potential therapeutic target for anti-metastatic therapy.
Collapse
Affiliation(s)
- Jiatao Wu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China
| | - Wenjuan Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China
| | - Xueying Zhang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China
| | - Fan Shi
- Department of Pathology, Bengbu Medical University, Bengbu, 233030, China
| | - Qianhao Jia
- Department of Pathology, Bengbu Medical University, Bengbu, 233030, China
| | - Yufei Wang
- Department of Pathology, Bengbu Medical University, Bengbu, 233030, China
| | - Yuqi Shi
- Key Laboratory of Anhui Province Cancer Translational Medicine Center, Bengbu, 233030, China
| | - Shiwu Wu
- Key Laboratory of Anhui Province Cancer Translational Medicine Center, Bengbu, 233030, China.
- Department of Pathology, Bengbu Medical University, Bengbu, 233030, China.
- Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu, 233004, China.
| |
Collapse
|
7
|
Wang R, Liu Z, Wang T, Zhang J, Liu J, Zhou Q. Landscape of adenosine pathway and immune checkpoint dual blockade in NSCLC: progress in basic research and clinical application. Front Immunol 2024; 15:1320244. [PMID: 38348050 PMCID: PMC10859755 DOI: 10.3389/fimmu.2024.1320244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer poses a global threat to human health, while common cancer treatments (chemotherapy and targeted therapies) have limited efficacy. Immunotherapy offers hope of sustained remission for many patients with lung cancer, but a significant proportion of patients fail to respond to treatment owing to immune resistance. There is extensive evidence to suggest the immunosuppressive microenvironment as the cause of this treatment failure. Numerous studies have suggested that the adenosine (ADO) pathway plays an important role in the formation of an immunosuppressive microenvironment and may be a key factor in the development of immune resistance in EGFR-mutant cell lung cancer. Inhibition of this pathway may therefore be a potential target to achieve effective reversal of ADO pathway-mediated immune resistance. Recently, an increasing number of clinical trials have begun to address the broad prospects of using the ADO pathway as an immunotherapeutic strategy. However, few researchers have summarized the theoretical basis and clinical rationale of the ADO pathway and immune checkpoint dual blockade in a systematic and detailed manner, particularly in lung cancer. As such, a timely review of the potential value of the ADO pathway in combination with immunotherapy strategies for lung cancer is warranted. This comprehensive review first describes the role of ADO in the formation of a lung tumor-induced immunosuppressive microenvironment, discusses the key mechanisms of ADO inhibitors in reversing lung immunosuppression, and highlights recent evidence from preclinical and clinical studies of ADO inhibitors combined with immune checkpoint blockers to improve the lung cancer immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Rulan Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Jiang B, Tang M, Shi S, Xie H, Pan S, Zhang L, Sheng J. Effects of abnormal expression of CD73 on malignant phenotype of nasopharyngeal carcinoma. J Mol Histol 2023; 54:633-644. [PMID: 37874500 DOI: 10.1007/s10735-023-10165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/30/2023] [Indexed: 10/25/2023]
Abstract
Cluster of differentiation (CD) 73, encoded by the NT5E gene, plays important enzymatic and non-enzymatic roles in cells. There is growing evidence show that CD73 is a key regulator in the development of tumor. Nasopharyngeal carcinoma (NPC) is one of the most common cancers in east and southeast Asia. It is urgent to know more about the mechanism of NPC development and find diagnostic markers for the patients. In this research, we carried out western blot, immunohistochemistry and qRT-PCR to investigate the expression level of CD73 and found that NPC tissues had higher level of CD73 than normal tissues. We also detected the relationship between its expression level with the clinicopathological features and prognosis of NPC patients. The results showed that CD73 expression was related to the clinical stages, lymph node metastasis and survival state of NPC patients. More importantly, patients with higher expression of CD73 had poorer prognosis. Then, CD73 was knocked down in NPC cells (CNE2 and CNE1), and its effects on cell proliferation and migration were investigated by CCK8, colony formation, Transwell and wound-healing assays. We found that knocking down the expression of CD73 in NPC cells could inhibit cells malignant phenotype. Collectively, CD73 plays important roles in NPC malignant behavior and might act as a novel target for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Mingming Tang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Si Pan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Lin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Haimen People's Hospital, Nantong, Jiangsu Province, China.
| | - Juping Sheng
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
9
|
Liu C, Gao ZW, Liu YQ, Yang L, Wu XN, Dong K, Zhu XM. Down-regulation of DPP4 by TGFβ1/miR29a-3p inhibited proliferation and promoted migration of ovarian cancer cells. Discov Oncol 2023; 14:195. [PMID: 37907650 PMCID: PMC10618141 DOI: 10.1007/s12672-023-00815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE To explore the DPP4 expression changes and functions in ovarian cancer (OV), as well as the regulation mechanism for DDP4. METHODS GEPIA2, GSE18520, GSE26712 and UALCAN were used to analyze differences in DPP4 expression between OV tumors and control tissues. Serum DPP4 levels were measured by ELISA. The prognostic values of DPP4 were evaluated using a Kaplan-Meier (KM) plotter. Small interfering RNA was used for DPP4 knockdown in OVCAR-3 and SKOV-3 cells. CCK-8 and scratch healing assays were used to determine the cells' proliferation and migration abilities. Flow cytometry (FCM) was used to detect the cell cycle and apoptosis. A dual-luciferase assay was designed to confirm the regulatory effect of miR-29a-3p on DPP4. RESULTS The expressions of DPP4 mRNA and protein were decreased in OV tumor tissues. Serum DPP4 levels decreased in OV patients. KM plotter analysis showed correlation between high DPP4 expression and a poor prognosis in OV patients. By targeting knockdown of DPP4, we found that OVCAR-3 and SKOV-3 cells' proliferation was inhibited, while cell's migration ability was significantly promoted. FCM analysis showed that DPP4 knockdown induced a decrease in the S phase. Furthermore, DPP4 was shown to be downregulated by miR-29a-3p and TGFβ1 in OVCAR-3 cells, and miR-29a-3p expression was upregulated by TGFβ1. The effects of miR-29a-3p and TGFβ1 on OVCAR-3 cells' biological behaviors were consistent with DPP4 knockdown. CONCLUSION DPP4 was downregulated in OV patients. DPP4 knockdown significantly inhibited OVCAR-3 and SKOV-3 cell proliferation and promoted cell migration. DDP4 can be downregulated by TGFβ1 through the upregulation of miR-29a-3p in OV cells.
Collapse
Affiliation(s)
- Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Military Medical University, Xinsi Road, Xi'an, 710038, China
| | - Zhao-Wei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Military Medical University, Xinsi Road, Xi'an, 710038, China
| | - Ying-Qi Liu
- School of Basic Medical Sciences, Air Force Medical University, No. 4 Company, Xi'an, China
| | - Lan Yang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Military Medical University, Xinsi Road, Xi'an, 710038, China
| | - Xia-Nan Wu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Military Medical University, Xinsi Road, Xi'an, 710038, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Military Medical University, Xinsi Road, Xi'an, 710038, China.
| | - Xiao-Ming Zhu
- Department of Obstetrics and Gynecology, Hainan Branch of PLA General Hospital, Jianglin Road, Sanya, 572022, China.
| |
Collapse
|
10
|
Haratani K, Nakamura A, Mamesaya N, Mitsuoka S, Yoneshima Y, Saito R, Tanizaki J, Fujisaka Y, Hata A, Tsuruno K, Sakamoto T, Teraoka S, Oki M, Watanabe H, Sato Y, Nakano Y, Otani T, Sakai K, Tomida S, Chiba Y, Ito A, Nishio K, Yamamoto N, Nakagawa K, Hayashi H. Tumor Microenvironment Landscape of NSCLC Reveals Resistance Mechanisms for Programmed Death-Ligand 1 Blockade After Chemoradiotherapy: A Multicenter Prospective Biomarker Study (WJOG11518L:SUBMARINE). J Thorac Oncol 2023; 18:1334-1350. [PMID: 37364849 DOI: 10.1016/j.jtho.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The PACIFIC regimen of consolidation therapy with the programmed cell death-ligand 1 inhibitor durvalumab after definitive concurrent chemoradiation therapy has become a standard of care for individuals with unresectable stage III NSCLC. Nevertheless, approximately half of the treated patients experience disease progression within 1 year, with the mechanisms of treatment resistance being poorly understood. We here performed a nationwide prospective biomarker study to explore the resistance mechanisms (WJOG11518L:SUBMARINE). METHODS A total of 135 patients with unresectable stage III NSCLC who received the PACIFIC regimen were included for comprehensive profiling of the tumor microenvironment by immunohistochemistry, transcriptome analysis, and genomic sequencing of pretreatment tumor tissue and flow cytometric analysis of circulating immune cells. Progression-free survival was compared on the basis of these biomarkers. RESULTS The importance of preexisting effective adaptive immunity in tumors was revealed for treatment benefit regardless of genomic features. We also identified CD73 expression by cancer cells as a mechanism of resistance to the PACIFIC regimen. Multivariable analysis of immunohistochemistry data with key clinical factors as covariables indicated that low CD8+ tumor-infiltrating lymphocyte density and the high CD73+ cancer cells were independently associated with poor durvalumab outcome (hazard ratios = 4.05 [95% confidence interval: 1.17-14.04] for CD8+ tumor-infiltrating lymphocytes; 4.79 [95% confidence interval: 1.12-20.58] for CD73). In addition, whole-exome sequencing of paired tumor samples suggested that cancer cells eventually escaped immune pressure as a result of neoantigen plasticity. CONCLUSIONS Our study emphasizes the importance of functional adaptive immunity in stage III NSCLC and implicates CD73 as a promising treatment target, thus providing insight forming a basis for development of a new treatment approach in NSCLC.
Collapse
Affiliation(s)
- Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan.
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Miyagi, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Junko Tanizaki
- Division of Medical Oncology, Kishiwada City Hospital, Kishiwada, Osaka, Japan
| | - Yasuhito Fujisaka
- Medical Oncology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Akito Hata
- Division of Thoracic Oncology, Kobe Minimally Invasive Cancer Center, Kobe, Hyogo, Japan
| | - Kosuke Tsuruno
- Department of Respiratory Medicine, Iizuka Hospital, Iizuka, Fukuoka, Japan
| | - Tomohiro Sakamoto
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Shunsuke Teraoka
- Internal Medicine III, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hiroshi Watanabe
- Department of Respiratory Medicine, Saka General Hospital, Shiogama, Miyagi, Japan
| | - Yuki Sato
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Yusuke Nakano
- Department of Medical Oncology, Izumi City General Hospital, Izumi, Osaka, Japan
| | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Okayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Nobuyuki Yamamoto
- Internal Medicine III, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
11
|
Shi E, Wu Z, Karaoglan BS, Schwenk-Zieger S, Kranz G, Abdul Razak N, Reichel CA, Canis M, Baumeister P, Zeidler R, Gires O. 5'-Ectonucleotidase CD73/NT5E supports EGFR-mediated invasion of HPV-negative head and neck carcinoma cells. J Biomed Sci 2023; 30:72. [PMID: 37620936 PMCID: PMC10463398 DOI: 10.1186/s12929-023-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) of malignant cells is a driving force of disease progression in human papillomavirus-negative (HPV-negative) head and neck squamous cell carcinomas (HNSCC). Sustained hyper-activation of epidermal growth factor receptor (EGFR) induces an invasion-promoting subtype of EMT (EGFR-EMT) characterized by a gene signature ("'EGFR-EMT_Signature'") comprising 5´-ectonucleotidase CD73. Generally, CD73 promotes immune evasion via adenosine (ADO) formation and associates with EMT and metastases. However, CD73 regulation through EGFR signaling remains under-explored and targeting options are amiss. METHODS CD73 functions in EGFR-mediated tumor cell dissemination were addressed in 2D and 3D cellular models of migration and invasion. The novel antagonizing antibody 22E6 and therapeutic antibody Cetuximab served as inhibitors of CD73 and EGFR, respectively, in combinatorial treatment. Specificity for CD73 and its role as effector or regulator of EGFR-EMT were assessed upon CD73 knock-down and over-expression. CD73 correlation to tumor budding was studied in an in-house primary HNSCC cohort. Expression correlations, and prognostic and predictive values were analyzed using machine learning-based algorithms and Kaplan-Meier survival curves in single cell and bulk RNA sequencing datasets. RESULTS CD73/NT5E is induced by the EGF/EGFR-EMT-axis and blocked by Cetuximab and MEK inhibitor. Inhibition of CD73 with the novel antagonizing antibody 22E6 specifically repressed EGFR-dependent migration and invasion of HNSCC cells in 2D. Cetuximab and 22E6 alone reduced local invasion in a 3D-model. Interestingly, combining inefficient low-dose concentrations of Cetuximab and 22E6 revealed highly potent in invasion inhibition, substantially reducing the functional IC50 of Cetuximab regarding local invasion. A role for CD73 as an effector of EGFR-EMT in local invasion was further supported by knock-down and over-expression experiments in vitro and by high expression in malignant cells budding from primary tumors. CD73 expression correlated with EGFR pathway activity, EMT, and partial EMT (p-EMT) in malignant single HNSCC cells and in large patient cohorts. Contrary to published data, CD73 was not a prognostic marker of overall survival (OS) in the TCGA-HNSCC cohort when patients were stratified for HPV-status. However, CD73 prognosticated OS of oral cavity carcinomas. Furthermore, CD73 expression levels correlated with response to Cetuximab in HPV-negative advanced, metastasized HNSCC patients. CONCLUSIONS In sum, CD73 is an effector of EGF/EGFR-mediated local invasion and a potential therapeutic target and candidate predictive marker for advanced HPV-negative HNSCC.
Collapse
Affiliation(s)
- Enxian Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Zhengquan Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Birnur Sinem Karaoglan
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nilofer Abdul Razak
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Structural Biology, Research Unit Therapeutic Antibodies, Helmholtz Munich, Feodor-Lynen-Str. 21, 81377, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
12
|
Koppensteiner L, Mathieson L, Pattle S, Dorward DA, O'Connor R, Akram AR. Location of CD39 + T cell subpopulations within tumors predict differential outcomes in non-small cell lung cancer. J Immunother Cancer 2023; 11:e006770. [PMID: 37648263 PMCID: PMC10471883 DOI: 10.1136/jitc-2023-006770] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 09/01/2023] Open
Abstract
PURPOSE An improved mechanistic understanding of immunosuppressive pathways in non-small cell lung cancer (NSCLC) is important to develop novel diagnostic and therapeutic approaches. Here, we investigate the prognostic significance of the ectonucleotidases CD39 and CD73 in NSCLC. EXPERIMENTAL DESIGN The expression and localization of CD39, CD73 and CD103 was digitally quantified in a cohort of 162 early treatment naïve NSCLC patients using multiplex-immunofluorescence and related to patient outcome. Expression among different cell-populations was assessed via flow cytometry. Targeted RNA-Seq was performed on CD4+ and CD8+ T cells from digested NSCLC tumor tissue and single-cell RNA-Seq data was analyzed to investigate the functional significance of CD39+ T cell populations. RESULTS We demonstrate that flow cytometry of early untreated NSCLC patients shows an upregulation of CD39 expression in the tumor tissue among natural killer (NK) cells, fibroblasts and T cells. CD73 expression is mainly found among fibroblasts and Epcam+cells in the tumor tissue. Multiplex Immunofluorescence in a cohort of 162 early untreated NSCLC patients demonstrates that CD39 expression is mainly localized in the tumor stroma while CD73 expression is equally distributed between tumor nest and stroma, and high expression of CD39 and CD73 in the tumor stroma is associated with poor recurrence-free survival (RFS) at 5 years. Additionally, we find that CD8+T cells located in the tumor nest express CD103 and the density of CD39+CD103+CD8+ T cells in the tumor nest predicts improved RFS at 5 years. Targeted RNA-Seq shows that the tumor microenvironment of NSCLC upregulates regulatory pathways in CD4+ T cells and exhaustion in CD8+ T cells, and analysis of a single cell RNA sequencing dataset shows that CD39+CD4+ cells are enriched in Treg signature gene-sets, and CD39+CD103+ cytotoxic T lymphocyte show gene signatures indicative of an exhausted cytotoxic phenotype with upregulated expression of CXCL13. CONCLUSIONS Knowledge of patterns of distribution and location are required to understand the prognostic impact of CD39+ T cell populations in NSCLC. This study provides an improved understanding of spatial and functional characteristics of CD39+ T cells and their significance to patient outcome.
Collapse
Affiliation(s)
| | - Layla Mathieson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Samuel Pattle
- Department of Pathology, Royal Infirmary, Edinburgh, UK
| | | | - Richard O'Connor
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Wang Y, Zhang T, Du H, Yang M, Xie G, Liu T, Deng S, Yuan W, He S, Wu D, Xu Y. Dipeptidase‑2 is a prognostic marker in lung adenocarcinoma that is correlated with its sensitivity to cisplatin. Oncol Rep 2023; 50:161. [PMID: 37449493 PMCID: PMC10360146 DOI: 10.3892/or.2023.8598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Lung cancer accounts for the highest percentage of cancer morbidity and mortality worldwide, and lung adenocarcinoma (LUAD) is the most prevalent subtype. Although numerous therapies have been developed for lung cancer, patient prognosis is limited by tumor metastasis and more effective treatment targets are urgently required. In the present study, gene expression profiles were extracted from the Gene Expression Omnibus database and mRNA expression data were downloaded from The Cancer Genome Atlas database. In addition, TIMER 2.0 database was used to analyze the expression of genes in normal and multiple tumor tissues. Protein expression was confirmed using the Human Protein Atlas database and LUAD cell lines, sphere formation assay, western blotting, and a xenograft mouse model were used to confirm the bioinformatics analysis. Dipeptidase‑2 (DPEP2) expression was significantly decreased in LUAD and was negatively associated with prognosis. DPEP2 overexpression substantially inhibited epithelial‑mesenchymal transition (EMT) as well as LUAD cell metastasis, and limited the expression of the cancer stem cell transformation markers, CD44 and CD133. In addition, DPEP2 improved LUAD sensitivity to cisplatin by inhibiting EMT; this was verified in vitro and in vivo. These data indicated that DPEP2 upregulates E‑cadherin, thereby regulating cell migration, cancer stem cell transformation, and cisplatin resistance, ultimately affecting the survival of patients with LUAD. Overall, the findings of the present suggest that DPEP2 is important in the development of LUAD and can be used both as a prognostic marker and a target for future therapeutic research.
Collapse
Affiliation(s)
- Yuanyi Wang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ting Zhang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Hongfei Du
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Min Yang
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Guangsu Xie
- Clinical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, Sichuan 610500, P.R. China
| | - Teng Liu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shihua Deng
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wei Yuan
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shuang He
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Dongming Wu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ying Xu
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
14
|
Kowash RR, Akbay EA. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer. Front Immunol 2023; 14:1130358. [PMID: 37033953 PMCID: PMC10079876 DOI: 10.3389/fimmu.2023.1130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The adenosine pathway is an exciting new target in the field of cancer immunotherapy. CD73 is the main producer of extracellular adenosine. Non-small cell lung cancer (NSCLC) has one of the highest CD73 expression signatures among all cancer types and the presence of common oncogenic drivers of NSCLC, such as mutant epidermal growth factor receptor (EGFR) and KRAS, correlate with increased CD73 expression. Current immune checkpoint blockade (ICB) therapies only benefit a subset of patients, and it has proved challenging to understand which patients might respond even with the current understanding of predictive biomarkers. The adenosine pathway is well known to disrupt cytotoxic function of T cells, which is currently the main target of most clinical agents. Data thus far suggests that combining ICB therapies already in the clinic with adenosine pathway inhibitors provides promise for the treatment of lung cancer. However, antigen loss or lack of good antigens limits efficacy of ICB; simultaneous activation of other cytotoxic immune cells such as natural killer (NK) cells can be explored in these tumors. Clinical trials harnessing both T and NK cell activating treatments are still in their early stages with results expected in the coming years. In this review we provide an overview of new literature on the adenosine pathway and specifically CD73. CD73 is thought of mainly for its role as an immune modulator, however recent studies have demonstrated the tumor cell intrinsic properties of CD73 are potentially as important as its role in immune suppression. We also highlight the current understanding of this pathway in lung cancer, outline ongoing studies examining therapies in combination with adenosine pathway targeting, and discuss future prospects.
Collapse
Affiliation(s)
- Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| |
Collapse
|
15
|
CD73: Friend or Foe in Lung Injury. Int J Mol Sci 2023; 24:ijms24065545. [PMID: 36982618 PMCID: PMC10056814 DOI: 10.3390/ijms24065545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Ecto-5′-nucleotidase (CD73) plays a strategic role in calibrating the magnitude and chemical nature of purinergic signals that are delivered to immune cells. Its primary function is to convert extracellular ATP to adenosine in concert with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) in normal tissues to limit an excessive immune response in many pathophysiological events, such as lung injury induced by a variety of contributing factors. Multiple lines of evidence suggest that the location of CD73, in proximity to adenosine receptor subtypes, indirectly determines its positive or negative effect in a variety of organs and tissues and that its action is affected by the transfer of nucleoside to subtype-specific adenosine receptors. Nonetheless, the bidirectional nature of CD73 as an emerging immune checkpoint in the pathogenesis of lung injury is still unknown. In this review, we explore the relationship between CD73 and the onset and progression of lung injury, highlighting the potential value of this molecule as a drug target for the treatment of pulmonary disease.
Collapse
|
16
|
Gao Z, Wu X, Yang L, Liu C, Wang X, Wang H, Dong K. Role of CD5 molecular-like on hepatocellular carcinoma. Chin Med J (Engl) 2023; 136:556-564. [PMID: 36939243 PMCID: PMC10106147 DOI: 10.1097/cm9.0000000000002576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND CD5L (CD5 molecular-like) plays an important role in lipid metabolism and immune regulation. This study aimed to investigate the roles of CD5L on liver hepatocellular carcinoma (LIHC). METHODS We analyzed the CD5L mRNA expression and its potential prognostic value based on The Cancer Genome Atlas and Gene Expression Omnibus databases. Immunohistochemical analysis was used to investigate the CD5L levels in LIHC tissues. Serum CD5L levels in LIHC were detected by enzyme-linked immunosorbent assay. Cell Counting Kit-8 (CCK-8) assay was used to investigate the effect of CD5L treatment on HepG2 and QSG-7701 cell proliferation. CD5L expression correlated genes were exhumed based on the LinkedOmics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for CD5L associated genes were performed. The correlation between CD5L and tumor immune infiltration was analyzed by using Tumor Immune Estimation Resource (TIMER) 2.0. RESULTS CD5L mRNA and protein levels were significantly decreased in LIHC tumor tissue compared with non-tumor control tissues. Moreover, serum CD5L levels were significantly lower in LIHC patients than that in healthy subjects. Gene Expression Profiling Interactive Analysis 2 and Kaplan-Meier plotter analysis showed that a high-CD5L expression was correlated with favorable overall survival in LIHC patients, except the LIHC patients with hepatitis virus. CCK-8 results showed that CD5L treatment significantly decreased HepG2 cell proliferation in a concentration-dependent manner, and CD5L treatment had no effect on the proliferation of non-tumor hepatocyte line QSG-7701. CD5L associated genes were enriched in the immune response biological process, and CD5L expression levels were positively correlated with the immune infiltrates of CD8 + T cell and M1 macrophage cells but negatively correlated with CD4 + T cells and M0 macrophage cell infiltration. CONCLUSIONS Exogenous CD5L inhibits cell proliferation of hepatocellular carcinoma. CD5L may act as a role of prognostic marker.
Collapse
Affiliation(s)
- Zhaowei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Xianan Wu
- Department of Medical Laboratory, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi 710038, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Chong Liu
- Department of Medical Laboratory, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi 710038, China
| | - Xi Wang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Huiping Wang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| |
Collapse
|
17
|
Pan-cancer analysis of LINC02535 as a potential biomarker and its oncogenic role in lung adenocarcinoma. Heliyon 2022; 8:e12108. [PMID: 36544816 PMCID: PMC9761721 DOI: 10.1016/j.heliyon.2022.e12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/06/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background LINC02535 has gained much attention for its oncogenicity across several cancers, but the systematic pan-cancer analysis of LINC02535 has not been carried out before. Methods Herein, we explored the expression level, prognostic value, and hallmark pathways of LINC02535 across multiple cancers using the Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) databases. Moreover, the expression and biological features of LINC02535 in lung adenocarcinoma (LUAD) were confirmed by qRT-PCR, in vitro and in vivo experiments. Results LINC02535 is differentially expressed in 10 of 17 human cancers and serves as a favorable or unfavorable biomarker in distinct cancer types. Gene set enrichment analysis (GSEA) indicated that key oncogenic pathways/phenotypes were remarkably activated in most cancers with intratumoral increased LINC02535, whereas these pathways/phenotypes were suppressed in other cancer types (colon adenocarcinoma, kidney renal clear cell carcinoma, rectal adenocarcinoma) with intratumoral decreased LINC02535. Of note, the epithelial-mesenchymal transition (EMT) phenotype was greatly enriched in LUAD patients with elevated LINC02535. Based on the TCGA and CCLE datasets, LINC02535 was positively correlated with the EMT-related gene CD73 (also named as NT5E, an immunosuppressive gene) in almost all cancer types (Spearman R > 0.5, P < 0.001) including LUAD. Most importantly, qRT-PCR confirmed that LINC02535 was upregulated in lung cancer cells or tissues as opposed to human bronchial epithelial cells or paratumor tissues. Knockdown of LINC02535 inhibited proliferation, migration of LUAD cells and retarded xenografted tumor growth. Moreover, silencing of LINC02535 induced apoptosis and cell cycle arrest at G1 phase. Conclusions The findings from our pan-cancer analysis provide a relatively comprehensive understanding of the potential value of LINC02535 across multiple cancers, and the oncogenic role of LINC02535 in LUAD has been confirmed.
Collapse
|
18
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
19
|
Zhou Y, Jiang D, Chu X, Yan M, Qi H, Wu X, Tang Y, Dai Y. High expression of CD73 contributes to poor prognosis of clear-cell renal cell carcinoma by promoting cell proliferation and migration. Transl Cancer Res 2022; 11:3634-3644. [PMID: 36388013 PMCID: PMC9641103 DOI: 10.21037/tcr-22-544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 10/12/2024]
Abstract
BACKGROUND Accumulating data have shown that high expression of CD73 is associated with poor prognosis in various cancers, however the role and significance of CD73 in clear-cell renal cell carcinoma (ccRCC) still remain unclear. The present study aims to evaluate the prognostic significance of CD73 in ccRCC and explore the potential function in vitro and in vivo. METHODS Firstly, the expression of CD73 in ccRCC was detected using clinical tissues and verified using TCGA and GEO data. Immunohistochemistry and Kaplan-Meier test were performed for survival analysis. Furthermore, knockdown or overexpression of CD73 was conducted by lentivirus transfection in ccRCC cells. MTT assay, colony formation assay, wound healing assay, transwell assay and xenograft assay were performed in vitro or in vivo. RESULTS Our results showed that CD73 was highly expressed in ccRCC, and high expression of CD73 was negatively correlated with prognosis. In addition, CD73 promoted cell proliferation and migration in vitro and in vivo. Our data also showed that CD73 played both enzymatic and non-enzymatic functions in the regulation of cell proliferation and migration in ccRCC. CONCLUSIONS These findings suggested that CD73 might promote the growth of ccRCC and contribute to poor prognosis. Taken together, CD73 may be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Dong Jiang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xi Chu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hao Qi
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiang Wu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
20
|
Iser IC, Vedovatto S, Oliveira FD, Beckenkamp LR, Lenz G, Wink MR. The crossroads of adenosinergic pathway and epithelial-mesenchymal plasticity in cancer. Semin Cancer Biol 2022; 86:202-213. [PMID: 35779713 DOI: 10.1016/j.semcancer.2022.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 10/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Samlai Vedovatto
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Dittrich Oliveira
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Sanborn RE, Schneiders FL, Senan S, Gadgeel SM. Beyond Checkpoint Inhibitors: Enhancing Antitumor Immune Response in Lung Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35671433 DOI: 10.1200/edbk_350967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The introduction of immune checkpoint inhibitors has dramatically changed the treatment landscape and improved survival for many patients with thoracic malignancies. Although some patients may experience prolonged survival benefit with immune checkpoint inhibitors, a majority do not experience disease control or benefit, supporting the need for research and development of improved approaches for facilitating immune recognition. Additionally, many patients will experience toxicity with the current approaches to immunotherapy, supporting the need for developing treatment strategies with less risk of adverse events. An extensive array of different strategies are currently under investigation, including novel combinations of checkpoint inhibitors or immunotherapies; novel agents beyond checkpoint inhibitors (e.g., bispecific antibodies, vaccine strategies, cytokine therapies); and different approaches for use of radiation to augment systemic immunotherapy agents. With each strategy, researchers are evaluating the potential for augmenting antitumor responses and ensuring more sustained antitumor effects. This article highlights areas of active research, reviewing the rationale for different investigative strategies, as well as currently available clinical data.
Collapse
Affiliation(s)
- Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | | | - Suresh Senan
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | |
Collapse
|