1
|
Chen Q, Zhong G, Fang X, Lin C, Wang S, Li M. The multifaceted role of Sestrin 3 (SESN3) in oxidative stress, inflammation and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119938. [PMID: 40174866 DOI: 10.1016/j.bbamcr.2025.119938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
The pathogenesis of inflammation and tumors is a focal point of scientific inquiry, with oxidative stress often serving as the primary initiator. Within the human genome, the SESN3 gene encodes the SESN3 protein, a crucial antioxidant stress protein. Acting as a regulatory factor, SESN3 intricately modulates cellular oxidative stress, actively participating in cellular protection and repair mechanisms. Its functions span antioxidative, anti-aging, and anti-tumor properties. The expression of SESN3 is closely linked to cellular and oxidative stress, metabolic status, and specific signaling pathways. This review aims to delve into the origins and functions of SESN3, its role within signaling pathways, and its contributions to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Qiusan Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou, Guangdong, China
| | - Xianmei Fang
- Department of Ultrasonography, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Chuangzhen Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Department of Gastroenterology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Chen Y, Wang J, Gu L, Chen H, Gai Z, Hu R, Qing B, Yuan Y, Xia Z. lncRNA NR_146969 promotes the progression of lung adenocarcinoma. Exp Cell Res 2025; 447:114535. [PMID: 40147711 DOI: 10.1016/j.yexcr.2025.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Emerging research suggests that dysregulation of long non-coding RNAs (lncRNAs) is closely linked to the onset and progression of cancer. In this study, we used lncRNA array technology to identify differentially expressed lncRNAs in lung adenocarcinoma patients and normal lung tissues. The study further explored the clinical significance and function of candidate lncRNAs in lung adenocarcinoma (LUAD). The results showed that lncRNA NR_146969 was upregulated in LAUD specimens and was associated with lymph node metastasis and clinical staging in LUAD patients. METHODS The biological functions of lncRNA NR_146969 were observed using CCK-8, colony formation, transwell assay and xenograft tumor model. Explore the potential mechanism of action of lncRNA NR_146969 by FISH, dual luciferase reporter assay and recovery assay. RESULTS Overall, lncRNA NR_146969 plays an oncogenic role in LUAD. Mechanically, lncRNA NR_146969 targets SLC6A14 via miR-26a-1-3p, leading to phosphorylation of the AKT/mTOR pathway, which promotes LUAD growth and metastasis. CONCLUSION Therefore, targeting lncRNA NR_146969 may provide a new therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Juan Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Linguo Gu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hongzuo Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengling Gai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Rui Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Hunan Provincial Key Laboratory of Early Diagnosis and Precision Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Wang G, Huang J, Chen H, Jiang C, Jiang L, Feng W, Tian G. Exploring novel biomarkers and immunotherapeutic targets for biofeedback therapies to reveal the tumor-associated immune microenvironment through a multimetric analysis of kidney renal clear cell carcinoma. Discov Oncol 2025; 16:311. [PMID: 40080320 PMCID: PMC11906931 DOI: 10.1007/s12672-025-02090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) constitutes the primary subtype of renal cell carcinoma, representing 75% to 80% of cases and carrying a substantial cancer-specific mortality rate of up to 24%. Despite advancements in treatment options, KIRC displays notable resistance to conventional therapies, emphasizing the need for innovative targeted immunotherapeutic strategies. Chromatin regulators (CRs), pivotal proteins controlling gene expression and critical biological processes, play a crucial role in the initiation and progression of KIRC. This study employed a multi-omics approach to evaluate the impact of CR-associated genes on KIRC prognosis. METHODS The study utilized the TCGA-KIRC dataset and employed LASSO Cox regression to construct and validate a prognostic model that focuses on genes influencing KIRC prognosis. The research investigated interactions among gene characteristics, clinical parameters, the tumor microenvironment, targeted immunotherapy, and drug responsiveness. Experimental validation, encompassing various techniques such as cell culture, transient transfection, qPCR, Transwell assays, confirmed the robust predictive capability of the BRD9 gene. RESULTS The analysis identified the risk score of CRs as an independent factor determining KIRC prognosis. Furthermore, the study introduced a predictive Nomogram model that integrates clinical attributes and risk assessment. Significantly, BRD9 exhibited substantially elevated expression within KIRC cells, underscoring its role in driving cancer cell proliferation, invasion, and migration. These findings suggest the potential for tailored immunotherapy targeting BRD9 in the treatment of KIRC. CONCLUSION This study presents an innovative prognostic framework for KIRC based on multi-omics approaches, seamlessly incorporating CRs. This model holds promise for improving the accuracy of prognosis prediction for KIRC patients, laying a robust foundation for the development of targeted immunotherapies.
Collapse
Affiliation(s)
- Guobing Wang
- Yibin Traditional Chinese Medicine Hospital, Yibin, China
| | - Jinbang Huang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lai Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenqi Feng
- Yibin Traditional Chinese Medicine Hospital, Yibin, China.
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
4
|
Hehlgans S, Eckert D, Martin D, Lumniczky K, Bug G, Rödel C, Rödel F. Irradiation alters extracellular vesicle microRNA load in the serum of patients with leukaemia. Strahlenther Onkol 2025; 201:173-184. [PMID: 39325141 PMCID: PMC11754379 DOI: 10.1007/s00066-024-02307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Recent data suggest an impact of extracellular vesicles (EVs) and their micro(mi)RNA cargo on cell-cell interactions to contribute to pathophysiology of leukaemia and radiation response. Here, we investigated differential miRNA cargo of EVs from serum derived from patients with leukaemia (n = 11) before and after total body irradiation with 2 × 2 Gy as compared to healthy donors (n = 6). METHODS RNA was isolated from EVs and subjected to next generation sequencing of miRNAs. Analysis of sequencing data was performed with miRDeep29 software and differentially expressed miRNAs were filtered using R package edgeR10,11. Signaling pathways were identified using Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway analysis. RESULTS Flow cytometric and Western blot analyses confirmed the presence of characteristic EV markers TSG-101, CD‑9 and CD-81. miRNA sequencing revealed a differential cargo in serum of patients with leukaemia in comparison to healthy donors with 23 significantly upregulated and 16 downregulated miRNAs affecting hedgehog, estrogen, glutathione metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathways amongst others. Whole body irradiation of patients with leukaemia significantly increased 11 miRNAs, involved in cell cycle regulation and platinum drug resistance, and decreased 15 miRNAs, contributing to apoptosis or cytokine-receptor interactions. CONCLUSION As compared to healthy controls and following irradiation, we have identified differentially regulated miRNAs in serum-derived EVs from patients with leukaemia that may serve as possible biomarkers of leukaemic disease and treatment and radiation exposure.
Collapse
Affiliation(s)
- Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Denise Eckert
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), 69120, Heidelberg, Germany
| | - Daniel Martin
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Katalin Lumniczky
- National Center for Public Health and Pharmacy, Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, Budapest, Hungary
| | - Gesine Bug
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Medicine II, Hematology and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Wang J, Li J, Han H, Wang C, Shi T, Yang X. miR-375-3p predicts the severity of endometriosis and regulates cellular progression by targeting NOX4. Mol Cell Probes 2025; 79:101999. [PMID: 39672281 DOI: 10.1016/j.mcp.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Due to the complex pathogenesis of endometriosis, its early screening and development prediction are still challenging problems in the clinic. OBJECTIVES This study evaluated the significance of miR-375-3p in endometriosis onset, progression, and recurrence, aiming to identify a novel biomarker for disease diagnosis and prognosis. MATERIALS AND METHODS The study enrolled 100 patients with endometriosis and 80 healthy females. The serum miR-375-3p levels were compared between the two groups, and its diagnostic significance and predictive value were assessed by ROC and Cox regression analyses. The effect of miR-375-3p on endometriosis cell growth and motility was evaluated by CCK8 and Transwell assays. RESULTS Endometriosis patients showed a lower serum miR-375-3p level relative to healthy females, and more severe the disease condition, lower the miR-375-3p in endometrial tissues is. Reducing serum miR-375-3p could discriminate endometriosis patients sensitively and specifically. Additionally, miR-375-3p was identified as a predictor for the recurrence of endometriosis together with stage, lesion size, and the levels of related hormones. In endometriosis cells, miR-375-3p was demonstrated to target NOX4 and negatively regulated its expression. Overexpressing miR-375-3p significantly suppressed cell proliferation, migration, and invasion, which was reversed by NOX4. CONCLUSION Decreasing miR-375-3p served as a biomarker for endometriosis onset, development, and recurrence. miR-375-3p regulated endometriosis cell growth and motility via negatively modulating NOX4.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Ultrasound 2, Xinxiang Central Hospital (The Fourth Clinical College of Xinxiang Medical University), Xinxiang, 453000, China.
| | - Jianling Li
- Department of Ultrasound 2, Xinxiang Central Hospital (The Fourth Clinical College of Xinxiang Medical University), Xinxiang, 453000, China
| | - Hua Han
- Department of Ultrasound 2, Xinxiang Central Hospital (The Fourth Clinical College of Xinxiang Medical University), Xinxiang, 453000, China
| | - Changhua Wang
- Department of Ultrasound, People's Hospital of Zhengzhou, Zhengzhou, 450002, China
| | - Taiying Shi
- Department of Ultrasound 2, Xinxiang Central Hospital (The Fourth Clinical College of Xinxiang Medical University), Xinxiang, 453000, China
| | - Xueyun Yang
- Department of Ultrasound 2, Xinxiang Central Hospital (The Fourth Clinical College of Xinxiang Medical University), Xinxiang, 453000, China
| |
Collapse
|
6
|
Pedroza-Torres A, Romero-Córdoba SL, Montaño S, Peralta-Zaragoza O, Vélez-Uriza DE, Arriaga-Canon C, Guajardo-Barreto X, Bautista-Sánchez D, Sosa-León R, Hernández-González O, Díaz-Chávez J, Alvarez-Gómez RM, Herrera LA. Radio-miRs: a comprehensive view of radioresistance-related microRNAs. Genetics 2024; 227:iyae097. [PMID: 38963803 PMCID: PMC11304977 DOI: 10.1093/genetics/iyae097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Radiotherapy is a key treatment option for a wide variety of human tumors, employed either alone or alongside with other therapeutic interventions. Radiotherapy uses high-energy particles to destroy tumor cells, blocking their ability to divide and proliferate. The effectiveness of radiotherapy is due to genetic and epigenetic factors that determine how tumor cells respond to ionizing radiation. These factors contribute to the establishment of resistance to radiotherapy, which increases the risk of poor clinical prognosis of patients. Although the mechanisms by which tumor cells induce radioresistance are unclear, evidence points out several contributing factors including the overexpression of DNA repair systems, increased levels of reactive oxygen species, alterations in the tumor microenvironment, and enrichment of cancer stem cell populations. In this context, dysregulation of microRNAs or miRNAs, critical regulators of gene expression, may influence how tumors respond to radiation. There is increasing evidence that miRNAs may act as sensitizers or enhancers of radioresistance, regulating key processes such as the DNA damage response and the cell death signaling pathway. Furthermore, expression and activity of miRNAs have shown informative value in overcoming radiotherapy and long-term radiotoxicity, revealing their potential as biomarkers. In this review, we will discuss the molecular mechanisms associated with the response to radiotherapy and highlight the central role of miRNAs in regulating the molecular mechanisms responsible for cellular radioresistance. We will also review radio-miRs, radiotherapy-related miRNAs, either as sensitizers or enhancers of radioresistance that hold promise as biomarkers or pharmacological targets to sensitize radioresistant cells.
Collapse
Affiliation(s)
- Abraham Pedroza-Torres
- Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City C.P. 03940, Mexico
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Sandra L Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City C.P. 04510, Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City C.P. 14080, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa (FCQB-UAS), Culiacán Rosales, Sinaloa C.P. 80030, Mexico
| | - Oscar Peralta-Zaragoza
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos C.P. 62100, Mexico
| | - Dora Emma Vélez-Uriza
- Laboratorio de Traducción y Cáncer, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León C.P. 64710, Mexico
| | - Xiadani Guajardo-Barreto
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
| | - Diana Bautista-Sánchez
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rodrigo Sosa-León
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Olivia Hernández-González
- Laboratorio de Microscopia Electrónica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarraa Ibarra”, Mexico City C.P. 14389, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
| | - Rosa María Alvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City C.P. 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León C.P. 64710, Mexico
| |
Collapse
|
7
|
Liu S, Wang Z, Hu L, Ye C, Zhang X, Zhu Z, Li J, Shen Q. Pan-cancer analysis of super-enhancer-induced LINC00862 and validation as a SIRT1-promoting factor in cervical cancer and gastric cancer. Transl Oncol 2024; 45:101982. [PMID: 38718436 PMCID: PMC11097084 DOI: 10.1016/j.tranon.2024.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Immune checkpoints inhibitors are effective but it needs more precise biomarkers for patient selection. We explored the biological significance of LINC00862 in pan-cancer by bioinformatics. And we studied its regulatory mechanisms using chromatin immunoprecipitation and RNA immunoprecipitation assays etc. TCGA and single-cell sequencing data analysis indicated that LINC00862 was overexpressed in the majority of tumor and stromal cells, which was related with poor prognosis. LINC00862 expression was related with immune cell infiltration and immune checkpoints expression, and had a high predictive value for immunotherapy efficacy. Mechanistically, LINC00862 competitively bound to miR-29c-3p to unleash SIRT1's tumor-promoting function. SIRT1 inhibitor-EX527 were screened by virtual screening and verified by in vitro and vivo assays. Notably, acetyltransferase P300-mediated super-enhancer activity stimulated LINC00862 transcription. Collectively, LINC00862 could be a diagnostic and prognostic biomarker. LINC00862 could also be a predictive biomarker for immunotherapy efficacy. Super-enhancer activity is the driver for LINC00862 overexpression in cervical cancer and gastric cancer.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Zhaohui Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Lei Hu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Chao Ye
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Xubin Zhang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Zhiqiang Zhu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Jiaqiu Li
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261031, Shandong, China.
| | - Qi Shen
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| |
Collapse
|
8
|
Xiong T, Wang D, Yang H, Liu B, Li Y, Yu W, Wang J, She Q. miR-194-3p regulates epithelial-mesenchymal transition in embryonic epicardial cells via p120/β-catenin signaling. Acta Biochim Biophys Sin (Shanghai) 2024; 56:717-729. [PMID: 38676398 PMCID: PMC11381220 DOI: 10.3724/abbs.2024051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
The epicardium is integral to cardiac development and facilitates endogenous heart regeneration and repair. While miR-194-3p is associated with cellular migration and invasion, its impact on epicardial cells remains uncharted. In this work we use gain-of-function and loss-of-function methodologies to investigate the function of miR-194-3p in cardiac development. We culture embryonic epicardial cells in vitro and subject them to transforming growth factor β (TGF-β) treatment to induce epithelial-mesenchymal transition (EMT) and monitor miR-194-3p expression. In addition, the effects of miR-194-3p mimics and inhibitors on epicardial cell development and changes in EMT are investigated. To validate the binding targets of miR-194-3p and its ability to recover the target gene-phenotype, we produce a mutant vector p120-catenin-3'UTR-MUT. In epicardial cells, TGF-β-induced EMT results in a notable overexpression of miR-194-3p. The administration of miR-194-3p mimics promotes EMT, which is correlated with elevated levels of mesenchymal markers. Conversely, miR-194-3p inhibitor attenuates EMT. Further investigations reveal a negative correlation between miR-194-3p and p120-catenin, which influences β-catenin level in the cell adhesion pathway. The suppression of EMT caused by the miR-194-3p inhibitor is balanced by silencing of p120-catenin. In conclusion, miR-194-3p directly targets p120-catenin and modulates its expression, which in turn alters β-catenin expression, critically influencing the EMT process in the embryonic epicardial cells via the cell adhesion mechanism.
Collapse
|
9
|
Gong E, Pan J, Ye Z, Cai X, Zheng H, Yin Z, Jiang Y, Wang X, Cao Z. Ganoderic acid A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to cisplatin. J Pharm Pharmacol 2024; 76:354-367. [PMID: 38330446 DOI: 10.1093/jpp/rgad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024]
Abstract
OBJECTIVES Reportedly, ganoderic acid A (GA-A) increases the sensitivity of hepatocellular carcinoma cells to cisplatin (DDP) chemotherapy. Therefore, this study aims to fathom the influence of GA-A on lung cancer cells. METHODS After the construction of A549/DDP cells through exposure to DDP, the effects of GA-A on A549 and A549/DDP cells were revealed by cellular functional assays, western blot and quantitative reverse transcription PCR (qRT-PCR). The DDP-resistant lung cancer tumor was established in vivo, followed by further validation of the mechanism of GA-A. RESULTS GA-A suppressed the viability, migration, and invasion while downregulating Beclin and autophagy marker LC3II/LC3I levels and upregulating P62 levels in A549 and A549/DDP cells. These effects were reversed by circFLNA overexpression. Also, GA-A reinforced the sensitivity of A549/DDP cells to DDP, elevated the apoptosis and regulated the circFLNA/miR-486-3p/cytochrome P450 family 1 subfamily A member 1 (CYP1A1)/X-ray repair cross-complementing 1 (XRCC1) axis. The reversal effects of circFLNA overexpression on GA-A-induced viability and apoptosis of A549/DDP cells could all be counteracted in the presence of 3MA. GA-A inhibited lung cancer tumor growth and blocked autophagy. CONCLUSION GA-A suppresses autophagy by regulating the circFLNA/miR-486-3p/CYP1A1/XRCC1 axis to strengthen the sensitivity of lung cancer cells to DDP.
Collapse
Affiliation(s)
- Enhui Gong
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, 15# Dazhong Street, Liandu District, Lishui City, Zhejiang Province, China
| | - Jiongwei Pan
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, 15# Dazhong Street, Liandu District, Lishui City, Zhejiang Province, China
| | - Zaiting Ye
- Radiology Department, The Sixth Affiliated Hospital of Wenzhou Medical University, 15# Dazhong Street, Liandu District, Lishui City, Zhejiang Province, China
| | - Xiaoping Cai
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, 15# Dazhong Street, Liandu District, Lishui City, Zhejiang Province, China
| | - Hao Zheng
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, 15# Dazhong Street, Liandu District, Lishui City, Zhejiang Province, China
| | - Zhangyong Yin
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, 15# Dazhong Street, Liandu District, Lishui City, Zhejiang Province, China
| | - Yiwei Jiang
- Graduate Department, Wenzhou Medical University, Wenzhou, University Town, Chashan, Wenzhou, Zhejiang, P.RChina
| | - Xin Wang
- Graduate Department, Wenzhou Medical University, Wenzhou, University Town, Chashan, Wenzhou, Zhejiang, P.RChina
| | - Zhuo Cao
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University, 15# Dazhong Street, Liandu District, Lishui City, Zhejiang Province, China
- Respiratory Department, Longquan People's Hospital, No. 699 Dongcha Road, Longquan City, Zhejiang Province, China
| |
Collapse
|
10
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
11
|
Guo S, Mao C, Peng J, Xie S, Yang J, Xie W, Li W, Yang H, Guo H, Zhu Z, Zheng Y. Improved lung cancer classification by employing diverse molecular features of microRNAs. Heliyon 2024; 10:e26081. [PMID: 38384512 PMCID: PMC10878959 DOI: 10.1016/j.heliyon.2024.e26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
MiRNAs are edited or modified in multiple ways during their biogenesis pathways. It was reported that miRNA editing was deregulated in tumors, suggesting the potential value of miRNA editing in cancer classification. Here we extracted three types of miRNA features from 395 LUAD and control samples, including the abundances of original miRNAs, the abundances of edited miRNAs, and the editing levels of miRNA editing sites. Our results show that eight classification algorithms selected generally had better performances on combined features than on the abundances of miRNAs or editing features of miRNAs alone. One feature selection algorithm, i.e., the DFL algorithm, selected only three features, i.e., the frequencies of hsa-miR-135b-5p, hsa-miR-210-3p and hsa-mir-182_48u (an edited miRNA), from 316 training samples. Seven classification algorithms achieved 100% accuracies on these three features for 79 independent testing samples. These results indicate that the additional information of miRNA editing is useful in improving the classification of LUAD samples.
Collapse
Affiliation(s)
- Shiyong Guo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, i.e., The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Shaohui Xie
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, Yunnan 650223, China
| | - Wenping Xie
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wanran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Huaide Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Hao Guo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zexuan Zhu
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yun Zheng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
12
|
Giammona A, Remedia S, Porro D, Lo Dico A, Bertoli G. The biological interplay between air pollutants and miRNAs regulation in cancer. Front Cell Dev Biol 2024; 12:1343385. [PMID: 38434617 PMCID: PMC10905188 DOI: 10.3389/fcell.2024.1343385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024] Open
Abstract
Air pollution, especially fine particulate matter (PM2.5, with an aerodynamic diameter of less than 2.5 μm), represents a risk factor for human health. Many studies, regarding cancer onset and progression, correlated with the short and/or long exposition to PM2.5. This is mainly mediated by the ability of PM2.5 to reach the pulmonary alveoli by penetrating into the blood circulation. This review recapitulates the methodologies used to study PM2.5 in cellular models and the downstream effects on the main molecular pathways implicated in cancer. We report a set of data from the literature, that describe the involvement of miRNAs or long noncoding RNAs on the main biological processes involved in oxidative stress, inflammation, autophagy (PI3K), cell proliferation (NFkB, STAT3), and EMT (Notch, AKT, Wnt/β-catenin) pathways. microRNAs, as well as gene expression profile, responds to air pollution environment modulating some key genes involved in epigenetic modification or in key mediators of the biological processes described below. In this review, we provide some scientific evidences about the thigh correlation between miRNAs dysregulation, PM2.5 exposition, and gene pathways involved in cancer progression.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Sofia Remedia
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Segrate, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
13
|
Huang J, Liu M, Chen H, Zhang J, Xie X, Jiang L, Zhang S, Jiang C, Zhang J, Zhang Q, Yang G, Chi H, Tian G. Elucidating the Influence of MPT-driven necrosis-linked LncRNAs on immunotherapy outcomes, sensitivity to chemotherapy, and mechanisms of cell death in clear cell renal carcinoma. Front Oncol 2023; 13:1276715. [PMID: 38162499 PMCID: PMC10757362 DOI: 10.3389/fonc.2023.1276715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Clear cell renal carcinoma (ccRCC) stands as the prevailing subtype among kidney cancers, making it one of the most prevalent malignancies characterized by significant mortality rates. Notably,mitochondrial permeability transition drives necrosis (MPT-Driven Necrosis) emerges as a form of cell death triggered by alterations in the intracellular microenvironment. MPT-Driven Necrosis, recognized as a distinctive type of programmed cell death. Despite the association of MPT-Driven Necrosis programmed-cell-death-related lncRNAs (MPTDNLs) with ccRCC, their precise functions within the tumor microenvironment and prognostic implications remain poorly understood. Therefore, this study aimed to develop a novel prognostic model that enhances prognostic predictions for ccRCC. METHODS Employing both univariate Cox proportional hazards and Lasso regression methodologies, this investigation distinguished genes with differential expression that are intimately linked to prognosis.Furthermore, a comprehensive prognostic risk assessment model was established using multiple Cox proportional hazards regression. Additionally, a thorough evaluation was conducted to explore the associations between the characteristics of MPTDNLs and clinicopathological features, tumor microenvironment, and chemotherapy sensitivity, thereby providing insights into their interconnectedness.The model constructed based on the signatures of MPTDNLs was verified to exhibit excellent prediction performance by Cell Culture and Transient Transfection, Transwell and other experiments. RESULTS By analyzing relevant studies, we identified risk scores derived from MPTDNLs as an independent prognostic determinant for ccRCC, and subsequently we developed a Nomogram prediction model that combines clinical features and associated risk assessment. Finally, the application of experimental techniques such as qRT-PCR helped to compare the expression of MPTDNLs in healthy tissues and tumor samples, as well as their role in the proliferation and migration of renal clear cell carcinoma cells. It was found that there was a significant correlation between CDK6-AS1 and ccRCC results, and CDK6-AS1 plays a key role in the proliferation and migration of ccRCC cells. Impressive predictive results were generated using marker constructs based on these MPTDNLs. CONCLUSIONS In this research, we formulated a new prognostic framework for ccRCC, integrating mitochondrial permeability transition-induced necrosis. This model holds significant potential for enhancing prognostic predictions in ccRCC patients and establishing a foundation for optimizing therapeutic strategies.
Collapse
Affiliation(s)
- Jinbang Huang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengtao Liu
- Pediatric Surgery, Guiyang Matemal and Child Health Care Hospital, Guiyang Children’s Hospital, Guiyang, China
| | - Haiqing Chen
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qinhong Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, GA, United States
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
14
|
Chi H, Huang J, Yan Y, Jiang C, Zhang S, Chen H, Jiang L, Zhang J, Zhang Q, Yang G, Tian G. Unraveling the role of disulfidptosis-related LncRNAs in colon cancer: a prognostic indicator for immunotherapy response, chemotherapy sensitivity, and insights into cell death mechanisms. Front Mol Biosci 2023; 10:1254232. [PMID: 37916187 PMCID: PMC10617599 DOI: 10.3389/fmolb.2023.1254232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Background: Colon cancer, a prevalent and deadly malignancy worldwide, ranks as the third leading cause of cancer-related mortality. Disulfidptosis stress triggers a unique form of programmed cell death known as disulfidoptosis, characterized by excessive intracellular cystine accumulation. This study aimed to establish reliable bioindicators based on long non-coding RNAs (LncRNAs) associated with disulfidptosis-induced cell death, providing novel insights into immunotherapeutic response and prognostic assessment in patients with colon adenocarcinoma (COAD). Methods: Univariate Cox proportional hazard analysis and Lasso regression analysis were performed to identify differentially expressed genes strongly associated with prognosis. Subsequently, a multifactorial model for prognostic risk assessment was developed using multiple Cox proportional hazard regression. Furthermore, we conducted comprehensive evaluations of the characteristics of disulfidptosis response-related LncRNAs, considering clinicopathological features, tumor microenvironment, and chemotherapy sensitivity. The expression levels of prognosis-related genes in COAD patients were validated using quantitative real-time fluorescence PCR (qRT-PCR). Additionally, the role of ZEB1-SA1 in colon cancer was investigated through CCK8 assays, wound healing experiment and transwell experiments. Results: disulfidptosis response-related LncRNAs were identified as robust predictors of COAD prognosis. Multifactorial analysis revealed that the risk score derived from these LncRNAs served as an independent prognostic factor for COAD. Patients in the low-risk group exhibited superior overall survival (OS) compared to those in the high-risk group. Accordingly, our developed Nomogram prediction model, integrating clinical characteristics and risk scores, demonstrated excellent prognostic efficacy. In vitro experiments demonstrated that ZEB1-SA1 promoted the proliferation and migration of COAD cells. Conclusion: Leveraging medical big data and artificial intelligence, we constructed a prediction model for disulfidptosis response-related LncRNAs based on the TCGA-COAD cohort, enabling accurate prognostic prediction in colon cancer patients. The implementation of this model in clinical practice can facilitate precise classification of COAD patients, identification of specific subgroups more likely to respond favorably to immunotherapy and chemotherapy, and inform the development of personalized treatment strategies for COAD patients based on scientific evidence.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yang Yan
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, China
| | - Chenglu Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qinghong Zhang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Gao M, Xiao H, Liang Y, Cai H, Guo X, Lin J, Zhuang S, Xu J, Ye S. The Hyperproliferation Mechanism of Cholesteatoma Based on Proteomics: SNCA Promotes Autophagy-Mediated Cell Proliferation Through the PI3K/AKT/CyclinD1 Signaling Pathway. Mol Cell Proteomics 2023; 22:100628. [PMID: 37532176 PMCID: PMC10495652 DOI: 10.1016/j.mcpro.2023.100628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023] Open
Abstract
Cholesteatoma is a chronic inflammatory ear disease with abnormal keratinized epithelium proliferation and tissue damage. However, the mechanism of keratinized epithelium hyperproliferation in cholesteatoma remains unknown. Hence, our study sought to shed light on mechanisms affecting the pathology and development of cholesteatoma, which could help develop adjunctive treatments. To investigate molecular changes in cholesteatoma pathogenesis, we analyzed clinical cholesteatoma specimens and paired ear canal skin with mass spectrometry-based proteomics and bioinformatics. From our screen, alpha-synuclein (SNCA) was overexpressed in middle ear cholesteatoma and might be a key hub protein associated with inflammation, proliferation, and autophagy in cholesteatoma. SNCA was more sensitive to lipopolysaccharide-induced inflammation, and autophagy marker increase was accompanied by autophagy activation in middle ear cholesteatoma tissues. Overexpression of SNCA activated autophagy and promoted cell proliferation and migration, especially under lipopolysaccharide inflammatory stimulation. Moreover, inhibiting autophagy impaired SNCA-mediated keratinocyte proliferation and corresponded with inhibition of the PI3K/AKT/CyclinD1 pathways. Also, 740Y-P, a PI3K activator reversed the suppression of autophagy and PI3K signaling by siATG5 in SNCA-overexpressing cells, which restored proliferative activity. Besides, knockdown of SNCA in RHEK-1 and HaCaT cells or knockdown of PI3K in RHEK-1 and HaCaT cells overexpressing SNCA both resulted in attenuated cell proliferation. Our studies indicated that SNCA overexpression in cholesteatoma might maintain the proliferative ability of cholesteatoma keratinocytes by promoting autophagy under inflammatory conditions. This suggests that dual inhibition of SNCA and autophagy may be a promising new target for treating cholesteatoma.
Collapse
Affiliation(s)
- Miao Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Heng Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yonglan Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huimin Cai
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojing Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianwei Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Suling Zhuang
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China.
| | - Shengnan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Fujian Institute of Otorhinolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
16
|
Murillo Carrasco AG, Giovanini G, Ramos AF, Chammas R, Bustos SO. Insights from a Computational-Based Approach for Analyzing Autophagy Genes across Human Cancers. Genes (Basel) 2023; 14:1550. [PMID: 37628602 PMCID: PMC10454514 DOI: 10.3390/genes14081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In the last decade, there has been a boost in autophagy reports due to its role in cancer progression and its association with tumor resistance to treatment. Despite this, many questions remain to be elucidated and explored among the different tumors. Here, we used omics-based cancer datasets to identify autophagy genes as prognostic markers in cancer. We then combined these findings with independent studies to further characterize the clinical significance of these genes in cancer. Our observations highlight the importance of innovative approaches to analyze tumor heterogeneity, potentially affecting the expression of autophagy-related genes with either pro-tumoral or anti-tumoral functions. In silico analysis allowed for identifying three genes (TBC1D12, KERA, and TUBA3D) not previously described as associated with autophagy pathways in cancer. While autophagy-related genes were rarely mutated across human cancers, the expression profiles of these genes allowed the clustering of different cancers into three independent groups. We have also analyzed datasets highlighting the effects of drugs or regulatory RNAs on autophagy. Altogether, these data provide a comprehensive list of targets to further the understanding of autophagy mechanisms in cancer and investigate possible therapeutic targets.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, Brazil; (G.G.); (A.F.R.)
| | - Alexandre Ferreira Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, Brazil; (G.G.); (A.F.R.)
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
17
|
Vaz CDO, Hounkpe BW, Oliveira JD, Mazetto B, Cardoso Jacintho B, Aparecida Locachevic G, Henrique De Oliveira Soares K, Carlos Silva Mariolano J, Castilho de Mesquita G, Colombera Peres K, Vieira- Damiani G, Vieira Geraldo M, Orsi FA. MicroRNA 205-5p and COVID-19 adverse outcomes: Potential molecular biomarker and regulator of the immune response. Exp Biol Med (Maywood) 2023; 248:1024-1033. [PMID: 37403291 PMCID: PMC10323515 DOI: 10.1177/15353702231175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 07/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The uncontrolled systemic inflammatory response, resulting from the release of large amounts of pro-inflammatory cytokines, is the main mechanism behind severe acute respiratory syndrome and multiple organ failure, the two main causes of death in COVID-19. Epigenetic mechanisms, such as gene expression regulation by microRNAs (miRs), may be at the basis of the immunological changes associated with COVID-19. Therefore, the main objective of the study was to evaluate whether the expression of miRNAs upon hospital admission could predict the risk of fatal COVID-19. To evaluate the level of circulating miRNAs, we used serum samples of COVID-19 patients collected upon hospital admission. Screening of differentially expressed miRNAs in fatal COVID-19 was performed by miRNA-Seq and the validation of miRNAs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The Mann-Whitney test and receiver operating characteristic (ROC) curve were used to validate the miRNAs, whose potential signaling pathways and biological processes were identified through an in silico approach. A cohort of 100 COVID-19 patients was included in this study. By comparing the circulating levels of miRs between survivors and patients who died due to complications of the infection, we found that the expression of miR-205-5p was increased in those who died during hospitalization, and the expression of both miR-205-5p (area under the curve [AUC] = 0.62, 95% confidence interval [CI] = 0.5-0.7, P = 0.03) and miR-206 (AUC = 0.62, 95% CI = 0.5-0.7, P = 0.03) was increased in those who lately evolved to severe forms of the disease (AUC = 0.70, 95% CI = 0.6-0.8, P = 0.002)."In silico" analysis revealed that miR-205-5p has the potential to enhance the activation of NLPR3 inflammasome and to inhibit vascular endothelial growth factor (VEGF) pathways. Impaired innate immune response against SARS-CoV-2 may be explained by epigenetic mechanisms, which could form early biomarkers of adverse outcomes.
Collapse
Affiliation(s)
| | - Bidossessi Wilfried Hounkpe
- Bone Metabolism Laboratory, Rheumatology Division, School of Medical Sciences, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - José Diogo Oliveira
- School of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil
| | - Bruna Mazetto
- School of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil
| | | | - Gisele Aparecida Locachevic
- Clinical Hospital, Department of Clinical Pathology, State University of Campinas, Campinas 13083-888, Brazil
| | | | - João Carlos Silva Mariolano
- Clinical Hospital, Department of Clinical Pathology, State University of Campinas, Campinas 13083-888, Brazil
| | | | - Karina Colombera Peres
- Clinical Hospital, Department of Clinical Pathology, State University of Campinas, Campinas 13083-888, Brazil
| | | | - Murilo Vieira Geraldo
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas 13083-862, Brazil
| | - Fernanda Andrade Orsi
- Department of Pathology, School of Medical Sciences, State University of Campinas, Campinas 13083-887, Brazil
| |
Collapse
|
18
|
Carius P, Jungmann A, Bechtel M, Grißmer A, Boese A, Gasparoni G, Salhab A, Seipelt R, Urbschat K, Richter C, Meier C, Bojkova D, Cinatl J, Walter J, Schneider‐Daum N, Lehr C. A Monoclonal Human Alveolar Epithelial Cell Line ("Arlo") with Pronounced Barrier Function for Studying Drug Permeability and Viral Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207301. [PMID: 36748276 PMCID: PMC10015904 DOI: 10.1002/advs.202207301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 06/18/2023]
Abstract
In the development of orally inhaled drug products preclinical animal models regularly fail to predict pharmacological as well as toxicological responses in humans. Models based on human cells and tissues are potential alternatives to animal experimentation allowing for the isolation of essential processes of human biology and making them accessible in vitro. Here, the generation of a novel monoclonal cell line "Arlo," derived from the polyclonal human alveolar epithelium lentivirus immortalized cell line hAELVi via single-cell printing, and its characterization as a model for the human alveolar epithelium as well as a building block for future complex in vitro models is described. "Arlo" is systematically compared in vitro to primary human alveolar epithelial cells (hAEpCs) as well as to the polyclonal hAELVi cell line. "Arlo" cells show enhanced barrier properties with high transepithelial electrical resistance (TEER) of ≈3000 Ω cm2 and a potential difference (PD) of ≈30 mV under air-liquid interface (ALI) conditions, that can be modulated. The cells grow in a polarized monolayer and express genes relevant to barrier integrity as well as homeostasis as is observed in hAEpCs. Successful productive infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a proof-of-principle study offers an additional, attractive application of "Arlo" beyond biopharmaceutical experimentation.
Collapse
Affiliation(s)
- Patrick Carius
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Annemarie Jungmann
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Marco Bechtel
- Institute of Medical VirologyUniversity Hospital FrankfurtPaul‐Ehrlich‐Str. 4060596Frankfurt am MainGermany
| | - Alexander Grißmer
- Department of Anatomy and Cellular BiologySaarland UniversityKirrberger StraßeBuilding 6166421Homburg SaarGermany
| | - Annette Boese
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Gilles Gasparoni
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Abdulrahman Salhab
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Ralf Seipelt
- Section of Thoracic Surgery of the Saar Lung CenterSHG Clinics VölklingenRichardstraße 5‐966333VölklingenGermany
| | - Klaus Urbschat
- Section of Thoracic Surgery of the Saar Lung CenterSHG Clinics VölklingenRichardstraße 5‐966333VölklingenGermany
| | - Clémentine Richter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Carola Meier
- Department of Anatomy and Cellular BiologySaarland UniversityKirrberger StraßeBuilding 6166421Homburg SaarGermany
| | - Denisa Bojkova
- Institute of Medical VirologyUniversity Hospital FrankfurtPaul‐Ehrlich‐Str. 4060596Frankfurt am MainGermany
| | - Jindrich Cinatl
- Institute of Medical VirologyUniversity Hospital FrankfurtPaul‐Ehrlich‐Str. 4060596Frankfurt am MainGermany
| | - Jörn Walter
- Department of Genetics and EpigeneticsSaarland UniversityCampus A2 466123SaarbrückenGermany
| | - Nicole Schneider‐Daum
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| |
Collapse
|
19
|
Yi Q, Feng J, Liao Y, Sun W. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life 2023; 75:225-237. [PMID: 35594011 DOI: 10.1002/iub.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Lung cancer is one of the high malignancy-related incidence and mortality worldwide, accounting for about 13% of total cancer diagnoses. Currently, the use of anti-cancer agents is still the main therapeutic method for lung cancer. However, cancer cells will gradually show resistance to these drugs with the progress of treatment. And the molecular mechanisms underlying chemotherapy agents resistance remain unclear. circRNAs are newly identified noncoding RNAs molecules with covalently closed circular structures. Previous studies have shown that circRNAs are associated with tumorigenesis and progression of various cancers, including lung cancer. Recently, growing reports have suggested that circRNAs could contribute to drug resistance of lung cancer cell through different mechanisms. Therefore, in this review, we summarized the functions and underlying mechanisms of circRNAs in regulating chemoresistance of lung cancer and discussed their potential applications for diagnosis, prognosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Sun Y, He P, Li L, Ding X. The significance of the crosstalk between ubiquitination or deubiquitination and ncRNAs in non-small cell lung cancer. Front Oncol 2023; 12:969032. [PMID: 36727069 PMCID: PMC9884829 DOI: 10.3389/fonc.2022.969032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide, with extremely high morbidity and mortality rates. Non-small cell lung cancer (NSCLC) is the most critical type of LC. It seriously threatens the life and health of patients because of its early metastasis, late clinical symptoms, limited early screening methods, and poor treatment outcomes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in cell proliferation, metastasis, and chemoresistance. Several previous studies have proven that ncRNAs are vital regulators of tumorigenesis. Ubiquitination plays the most crucial role in protein post-translational modification (PTM). Deubiquitination and ubiquitination form a homeostasis. In summary, ubiquitination and deubiquitination play essential roles in mediating the degradation or overexpression of a range of crucial proteins in various cancers. A growing number of researchers have found that interactions between ncRNAs and ubiquitination (or deubiquitination) play a crucial role in NSCLC. This review presents several typical examples of the important effects of ncRNAs and ubiquitination (or deubiquitination) in NSCLC, aiming to provide more creative ideas for exploring the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Yiyang Sun
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Ping He,
| | - Li Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Ding
- General Medicine Department, Dalian Friendship Hospital, Dalian, China
| |
Collapse
|
21
|
Peng G, Chi H, Gao X, Zhang J, Song G, Xie X, Su K, Song B, Yang J, Gu T, Li Y, Xu K, Li H, Liu Y, Tian G. Identification and validation of neurotrophic factor-related genes signature in HNSCC to predict survival and immune landscapes. Front Genet 2022; 13:1010044. [PMID: 36406133 PMCID: PMC9672384 DOI: 10.3389/fgene.2022.1010044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common type of cancer worldwide. Its highly aggressive and heterogeneous nature and complex tumor microenvironment result in variable prognosis and immunotherapeutic outcomes for patients with HNSCC. Neurotrophic factor-related genes (NFRGs) play an essential role in the development of malignancies but have rarely been studied in HNSCC. The aim of this study was to develop a reliable prognostic model based on NFRGs for assessing the prognosis and immunotherapy of HNSCC patients and to provide guidance for clinical diagnosis and treatment. Methods: Based on the TCGA-HNSC cohort in the Cancer Genome Atlas (TCGA) database, expression profiles of NFRGs were obtained from 502 HNSCC samples and 44 normal samples, and the expression and prognosis of 2601 NFRGs were analyzed. TGCA-HNSC samples were randomly divided into training and test sets (7:3). GEO database of 97 tumor samples was used as the external validation set. One-way Cox regression analysis and Lasso Cox regression analysis were used to screen for differentially expressed genes significantly associated with prognosis. Based on 18 NFRGs, lasso and multivariate Cox proportional risk regression were used to construct a prognostic risk scoring system. ssGSEA was applied to analyze the immune status of patients in high- and low-risk groups. Results: The 18 NFRGs were considered to be closely associated with HNSCC prognosis and were good predictors of HNSCC. The multifactorial analysis found that the NFRGs signature was an independent prognostic factor for HNSCC, and patients in the low-risk group had higher overall survival (OS) than those in the high-risk group. The nomogram prediction map constructed from clinical characteristics and risk scores had good prognostic power. Patients in the low-risk group had higher levels of immune infiltration and expression of immune checkpoints and were more likely to benefit from immunotherapy. Conclusion: The NFRGs risk score model can well predict the prognosis of HNSCC patients. A nomogram based on this model can help clinicians classify HNSCC patients prognostically and identify specific subgroups of patients who may have better outcomes with immunotherapy and chemotherapy, and carry out personalized treatment for HNSCC patients.
Collapse
Affiliation(s)
- Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Gao
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Ke Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Tao Gu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yunyue Li
- Queen Mary College, Medical School of Nanchang University, Nanchang, China
| | - Ke Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Han Li
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, Xu K, Gu T, Yang X, Tian G. Cuprotosis Programmed-Cell-Death-Related lncRNA Signature Predicts Prognosis and Immune Landscape in PAAD Patients. Cells 2022; 11:3436. [PMID: 36359832 PMCID: PMC9658590 DOI: 10.3390/cells11213436] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
In terms of mortality and survival, pancreatic cancer is one of the worst malignancies. Known as a unique type of programmed cell death, cuprotosis contributes to tumor cell growth, angiogenesis, and metastasis. Cuprotosis programmed-cell-death-related lncRNAs (CRLs) have been linked to PAAD, although their functions in the tumor microenvironment and prognosis are not well understood. This study included data from the TCGA-PAAD cohort. Random sampling of PAAD data was conducted, splitting the data into two groups for use as a training set and test set (7:3). We searched for differentially expressed genes that were substantially linked to prognosis using univariate Cox and Lasso regression analysis. Through the use of multivariate Cox proportional risk regression, a risk-rating system for prognosis was developed. Correlations between the CRL signature and clinicopathological characteristics, tumor microenvironment, immunotherapy response, and chemotherapy sensitivity were further evaluated. Lastly, qRT-PCR was used to compare CRL expression in healthy tissues to that in tumors. Some CRLs are thought to have strong correlations with PAAD outcomes. These CRLs include AC005332.6, LINC02041, LINC00857, and AL117382.1. The CRL-based signature construction exhibited outstanding predictive performance and offers a fresh approach to evaluating pre-immune effectiveness, paving the way for future studies in precision immuno-oncology.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Rui Wang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Fengyi Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Tao Gu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
23
|
Mechanism and Function of Circular RNA in Regulating Solid Tumor Radiosensitivity. Int J Mol Sci 2022; 23:ijms231810444. [PMID: 36142355 PMCID: PMC9499630 DOI: 10.3390/ijms231810444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Radiotherapy is an important tool in the treatment of malignant tumors, and exploring how to make radiotherapy more effective is a new way to break through the current bottleneck in the development of radiation oncology. Circular RNAs (circRNAs) are a special class of endogenous non-coding RNAs. Numerous studies have shown that circRNAs have shown great potential in regulating the biological functions of tumors, including proliferation, migration, invasion, and treatment resistance, and that differences in their expression levels are closely related to the clinical prognosis of tumor patients. This review systematically compares the mechanisms of circRNAs in the process of tumor development and radiosensitivity and provides insight into the clinical translation of circRNAs in radiotherapy.
Collapse
|
24
|
Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Mol Biol Rep 2022; 49:7025-7037. [PMID: 35534587 DOI: 10.1007/s11033-022-07517-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Cancer widely affects the world's health population and ranks second leading cause of death globally. Because of poor prognosis of various types of cancer such as sarcoma, lymphoma, adenomas etc., their high recurrence and metastasis rate and low early diagnosis rate have become concern lately. Role of autophagy in cancer progression is being studied since long. Autophagy is cell's self-degradative mechanism towards stress and has role in degradation of the cytoplasmic macromolecules which has potential to damage other cytosolic molecules. Autophagy can promote as well as inhibit tumorigenesis depending upon the associated protein combinations in cancer cells. Recent studies have shown that non-coding RNAs (ncRNAs) do not code for protein but play essential role in modulation of gene expression. At transcriptional level, different ncRNAs like lncRNAs, miRNAs and circRNAs directly or indirectly affect different stages of autophagy like autophagy-dependent and non-apoptotic cell death in cancer cells. This review focuses on the involvement of ncRNAs in autophagy and the modulation of several cancer signal transduction pathways in cancers such as lung, breast, prostate, pancreatic, thyroid, and kidney cancer.
Collapse
|
25
|
He Z, Cai K, Zeng Z, Lei S, Cao W, Li X. Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression. Cell Death Dis 2022; 13:233. [PMID: 35288538 PMCID: PMC8921308 DOI: 10.1038/s41419-022-04677-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022]
Abstract
Dysregulation of autophagy and circular RNAs (circRNAs) are involved in the pancreatic cancer (PC) progression. However, the regulatory network between circRNAs, autophagy, and PC progression remains unknown. Herein, we demonstrated that autophagy-associated circRNA circ-autophagy related 7 (circATG7) was elevated in PC tissues compared to adjacent tissues, and in PC cells treated with EBSS and hypoxia. circATG7 expression was positively associated with tumor diameter and lymph node invasion in patients with PC. circATG7 overexpression promoted PC cell proliferation, mobility, and autophagy in vitro, while circATG7 knockdown induced the opposite effects. ATG7 inhibition attenuated the effects of circATG7 on the biological functions of PC cells. CircATG7 is located in the cell cytoplasm and nucleus. Cytoplasmic circATG7 sponged miR-766-5p and decreased its expression, and increased the expression of ATG7, a target gene of miR-766-5p. Nuclear circATG7 acted as a scaffold to increase the interaction between the human antigen R protein and ATG7 mRNA and enhanced ATG mRNA stability. Furthermore, we demonstrated that circATG7 regulates PC cell proliferation and metastasis in vivo via ATG7-dependent autophagy. In conclusion, our results demonstrated that circATG7 accelerates PC progression via miR-766-5p/ATG7 and that HUR/ATG7 depends on autophagic flux. Thus, circATG7 may be a potential therapeutic target for PC.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases & Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Kun Cai
- Guizhou Medical University, Guiyang, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shan Lei
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Wenpeng Cao
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases & Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, 518055, China.
- Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|