1
|
Liu Q, Yan L, Wu T, Wu Q, Ke B, Shen W. Peli1, regulated by m 6A modification, suppresses NLRP3 inflammasome activation in atherosclerosis by inhibiting YB-1. Commun Biol 2025; 8:457. [PMID: 40102597 PMCID: PMC11920095 DOI: 10.1038/s42003-025-07839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
The activation of pyrin domain-containing-3 (NLRP3) inflammasome in macrophages is a risk factor accelerating the progression of atherosclerosis (AS). Here, the function of pellino 1 (Peli1) in regulating the activation of NLRP3 inflammasome during the development of AS was investigated. Our results showed that Y-box binding protein 1 (YB-1) knockdown could inhibit the progression of AS in vivo, and YB-1 silencing repressed oxidized low-density lipoprotein (ox-LDL)-mediated lipid accumulation and inflammation in macrophages by inactivating NLRP3 inflammasome. E3 ubiquitination ligase Peli1 mediated ubiquitination-dependent degradation of YB-1 during AS progression. Moreover, it was found that YTH domain-containing 2 (YTHDC2) recognized methyltransferase-like 3 (METTL3)-mediated Peli1 N6-methyladenosine (m6A) modification and mediated Peli1 mRNA degradation. Rescue studies revealed that YB-1 upregulation abrogated the repressive effect of Peli1 upregulation on AS progression both in vitro and in vivo. Taken together, Peli1, regulated by m6A modification, inhibited YB-1-mediated activation of NLRP3 inflammasome in macrophages by promoting YB-1 ubiquitination to suppress the progression of AS.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lu Yan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Feng XM, Zhang Y, Chen N, Ma LL, Gong M, Yan YX. The role of m 6A modification in cardiovascular disease: A systematic review and integrative analysis. Int Immunopharmacol 2024; 143:113603. [PMID: 39536485 DOI: 10.1016/j.intimp.2024.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS This study focused on the recent advancements in understanding the association between N6-methyladenosine (m6A) modification and cardiovascular disease (CVD). METHODS The potential mechanisms of m6A related to CVD were summarized by literature review. Associations between m6A levels and CVD were explored across 8 electronic databases: PubMed, Embase, Web of Science, Cochrane Library, Sinomed, Wan Fang, CNKI, and Vip. Standard mean difference (SMD) and 95 % confidence interval (95 % CI) were calculated to assess the total effect in integrated analysis. RESULTS The systematic review summarized previous studies on the association between m6A modification and CVD, highlighting the potential role of m6A in CVD progression. A total of 11 studies were included for integrative analysis. The mean m6A levels were significantly higher in CVD than those in normal controls (SMD = 1.86, 95 % CI: 0.16-3.56, P < 0.01). CONCLUSIONS This systematic review provided new targets for early detection and treatment for CVD. And the integrated analysis showed that increased level of m6A was associated with CVD.
Collapse
Affiliation(s)
- Xu-Man Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ning Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Lin-Lin Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Miao Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
3
|
Xiong Q, Luo Z, Xie X, Zhou W. KLF7 reverses ox-LDL-induced ferroptosis in HMEC-1 cells through transcriptionally activating ALKBH5 to inhibit the m6A modification of ACSL4. Cytotechnology 2024; 76:653-666. [PMID: 39435423 PMCID: PMC11490622 DOI: 10.1007/s10616-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/24/2024] [Indexed: 10/23/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease. It was confirmed that activation of ferroptosis could induce the development of AS. Meanwhile, Krüppel-like factor 7 was reported to be involved in AS. Nevertheless, the detailed function of KLF7 in ferroptosis during AS has not been not explored. To mimic AS in vitro, human microvascular endothelial cells (HMEC-1) were exposed to 100 μg/mL ox-LDL. Cell viability was tested using MTT assay, and commercial kits were applied to examine the ferroptosis. Flow cytometry was applied for testing lipid ROS level. The relation between KLF7 and AlkB homolog 5 (ALKBH5) was explored using dual luciferase and ChIP assays. Furthermore, MeRIP was used to test the m6A modification level of ACSL4. KLF7 and ALKBH5 overexpression reversed ox-LDL-induced ferroptosis (characterized by up-regulated MDA, iron, Fe2+, lipid ROS and ACSL4, and down-regulated GSH and GPX4) in HMEC-1 cells. In addition, KLF7 transcriptionally activated ALKBH5. ALKBH5 decreased the level of ACSL4 by inhibiting the m6A modification of ACSL4. Furthermore, upregulation of KLF7 restored ox-LDL-induced ferroptosis in HMEC-1 cells via upregulating ALKBH5. KLF7 repressed ox-LDL-induced ferroptosis in HMEC-1 cells through promoting ALKBH5 mediated m6A demethylation of ACSL4. Our study might supply a new therapeutic strategy for AS treatment.
Collapse
Affiliation(s)
- Qinggen Xiong
- Intervention Department (Vascularsurgery Department) of The Second Affiliated Hospital of Nanchang University, No.566 Xuefu Avenue, Honggutan District, Nanchang, 330008 Jiangxi Province China
| | - Zhijian Luo
- Intervention Department (Vascularsurgery Department) of The Second Affiliated Hospital of Nanchang University, No.566 Xuefu Avenue, Honggutan District, Nanchang, 330008 Jiangxi Province China
| | - Xiaoming Xie
- Intervention Department (Vascularsurgery Department) of The Second Affiliated Hospital of Nanchang University, No.566 Xuefu Avenue, Honggutan District, Nanchang, 330008 Jiangxi Province China
| | - Wei Zhou
- Intervention Department (Vascularsurgery Department) of The Second Affiliated Hospital of Nanchang University, No.566 Xuefu Avenue, Honggutan District, Nanchang, 330008 Jiangxi Province China
| |
Collapse
|
4
|
Min XL, Lin SX, Zhao XH, Zhao Q, Li YF, Li XH, Liu XY, Cao Y, Sun YL, Zeng Y. Mechanisms of METTL14-Mediated m6A Modification in Promoting Iron Overload-Induced Lipid Peroxidative Damage in Vascular Endothelial Cells to Aggravate Atherosclerosis. J Biochem Mol Toxicol 2024; 38:e70066. [PMID: 39588760 DOI: 10.1002/jbt.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Atherosclerosis (AS) is a chronic multifactorial disease with damage to vascular endothelial cells (VECs). This study sought to delve into the mechanism of methyltransferase-like 14 (METTL14) in iron overload-induced lipid peroxidative damage in AS. AS mouse model and cell model were established. Levels of METTL14/circRNA coded by the Arhgap12 (circARHGAP12)/Aspartate β-hydroxylase (ASPH) were determined. AS plaque area/lipid deposition/lipid metabolism in AS mice and iron overload in VECs were evaluated. N6-methyladenosine (m6A) level and METTL14 enrichment and human antigen R (HuR) in circARHGAP12 or ASPH were measured. The mRNA stability of circARHGAP12 or ASPH was analyzed. We observed that METTL14 was upregulated in AS mice. METTL14 downregulation reduced plaque area/lipid deposition/iron overload/peroxidative damage in AS mice. In cell models, METTL14 downregulation could VEC injury/iron overload/lipid peroxidative damage. Mechanically, METTL14 increased the stability and expression of circARHGAP12 through m6A modification, further stabilized ASPH mRNA, and promoted ASPH transcription by binding to HuR. Overexpression of circARHGAP12 or inhibition of ASPH averted the protective role of METTL14 downregulation against iron overload-induced peroxidative damage in AS. In conclusion, METTL14-mediated m6A modification upregulated circARHGAP12 and ASPH to aggravate overload-induced lipid peroxidative damage and facilitate AS progression.
Collapse
Affiliation(s)
- Xiao-Li Min
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si-Xian Lin
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Hong Zhao
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Zhao
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun-Fei Li
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu-Hui Li
- Department of Neurosurgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Yong Liu
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Cao
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Long Sun
- Department of Neurology, Baoshan people's hospital, Baoshan, China
| | - Yong Zeng
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Jiang M, Zhao W, Wu L, Zhu G. Screening of m6A-associated ferroptosis-related genes in atherosclerosis based on WGCNA. Front Cardiovasc Med 2024; 11:1469805. [PMID: 39529974 PMCID: PMC11550986 DOI: 10.3389/fcvm.2024.1469805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Background N6-methyladenosine (m6A) has been shown to mediate ferroptosis but its role in atherosclerosis (AS) is unclear. Methods Differentially expressed m6A-associated ferroptosis-related genes (DE-m6A-Ferr-RGs) were obtained using differential expression analysis and Pearson correlation analysis. Weighted gene co-expression network analysis (WGCNA) was also performed. The intersection of the module genes and the DE-m6A-Ferr-RGs were recorded as candidate m6A-Ferr-related signature genes. Finally, the m6A-Ferr-related signature genes were screened using least absolute shrinkage and selection operator (LASSO) analysis. Expression validation, receiver operating characteristic ( mapping, and immune correlation analysis were also performed based on the m6A-Ferr-related signature genes. The expression of m6A-Ferr-related signature genes was further validated using a real-time polymerase chain reaction (RT-qPCR). Results In total, 6,167 differentially expressed genes were intersected with 24 m6A- and 259 ferroptosis-related genes, respectively, resulting in 113 DE-m6A-Ferr-RGs obtained using Pearson's correlation analysis. The module genes obtained from the WGCNA and the 113 DE-m6A-Ferr-RGs were intersected to obtain 48 candidate m6A-Ferr-related signature genes. LASSO analysis was performed and six m6A-Ferr-related signature genes were screened. In addition, the area under the curve values of all six m6A-Ferr-related signature genes were greater than 0.7, indicating that they had potential diagnostic value. Furthermore, the RT-qPCR results revealed that the expression of SLC3A2, NOX4, and CDO1 was consistent with the transcriptome level. Moreover, there was a significant difference in two types of immune cells between the AS and control groups. Naive B cells, CD8+ T cells, regulatory T cells, and activated natural killer cells were positively correlated with CDO1 and NOX4 but negatively correlated with ATG7, CYBB, and SLC3A2. Conclusion In total, three m6A-Ferr-related signature genes (NOX4, CDO1, and SLC3A2) were obtained through a series of bioinformatics analyses and an RT-qPCR.
Collapse
Affiliation(s)
| | | | | | - Guofu Zhu
- Cardiology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Woudenberg T, van der Bent ML, Kremer V, Waas ISE, Daemen MJAP, Boon RA, Quax PHA, Nossent AY. Site-specific m6A-miR-494-3p, not unmethylated miR-494-3p, compromises blood brain barrier by targeting tight junction protein 1 in intracranial atherosclerosis. Br J Pharmacol 2024. [PMID: 39419283 DOI: 10.1111/bph.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Intracranial atherosclerosis is one of the most common causes of ischaemic stroke. However, there is a substantial knowledge gap on the development of intracranial atherosclerosis. Intracranial arteries are characterized by an upregulation of tight junctions between endothelial cells, which control endothelial permeability. We investigated the role of N6-methyladenosine (m6A), a common RNA modification, on endothelial integrity, focusing on the pro-atherogenic microRNA miR-494-3p and tight junction proteins TJP1 and PECAM1. EXPERIMENTAL APPROACH We assessed the m6A landscape, along with the expression of miR-494-3p, TJP1 and PECAM1 in postmortem human vertebral arteries (VA), internal carotid arteries (ICA), and middle cerebral arteries (MCA) with various stages of intimal thickening and plaque formation. The interactions between m6A-modified miR-494-3p mimics, TJP1 and PECAM1, were investigated in vitro using primary human (brain) endothelial cells. KEY RESULTS Increased m6A expression was observed in the luminal lining of atherosclerosis-affected VAs, accompanied by reduced TJP1 and PECAM1, but not VE-cadherin, expression. Colocalization of m6A and miR-494-3p in the luminal lining of VA plaques was confirmed, indicating m6A methylation of miR-494-3p in intracranial atherosclerosis. Moreover, site-specific m6A-modification of miR-494-3p led to repression specifically of TJP1 protein expression at cell-cell junctions of brain microvascular endothelial cells, while unmodified miR-494-3p showed no effect. CONCLUSIONS AND IMPLICATIONS This study highlights increasing m6A levels during intracranial atherogenesis. Increases in m6A-miR-494-3p contribute to the observed decreased TJP1 expression in endothelial cell-cell junctions. This is likely to have a negative effect on endothelial integrity and may thus accelerate intracranial atherosclerosis progression.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Leontien van der Bent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUMc, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ingeborg S E Waas
- Department of Pathology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUMc, Vrije Universiteit, Amsterdam, The Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - A Yaël Nossent
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
8
|
Chang J, Shao R, Xu X, Jin Y. Clinical significance of the m6A methyltransferase METTL3 in peripheral blood of patients with coronary heart disease. Front Cardiovasc Med 2024; 11:1442098. [PMID: 39371395 PMCID: PMC11449698 DOI: 10.3389/fcvm.2024.1442098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Objective This study aims to explore the association of methyltransferase-like protein 3 (METTL3) expression with severity of coronary artery stenosis in patients with coronary heart disease (CHD). Methods A total of 100 patients administrated in the Fourth Affiliated Hospital of China Medical University between October 2022 and June 2023 with primary symptoms of chest pain or tightness, or cardiac discomfort, and who underwent coronary angiography for a definitive diagnosis, were included in the study. The baseline characteristics, including TG, TC, LDL-C, HDL-C, uric acid and past history were recorded. Peripheral blood samples were collected to assess the expression levels of METTL3, YT521-B homology domains 1 (YTHDF1), YT521-B homology domains 2 (YTHDF2), and YT521-B homology domains 3 (YTHDF3) using the PCR method. Relative expression levels of METTL3 protein were determined by Western blotting. Correlation analysis were conducted to evaluate the relationship between METTL3/YTHDF1 gene expression and clinical data. Receiver operating characteristic (ROC) curve analysis was employed to assess the predictive value of METTL3 and YTHDF1 for CHD. Binary logistic regression was used to determine whether the expression of METTL3 and YTHDF1 in peripheral blood were risk factors for CHD. Results The study found no significant differences in baseline characteristics between CHD patients and controls, except for length of stay, Lymphocytes, Neutrophils, AST, HDL-C and modified Gensini score. The gene expression levels of METTL3 and YTHDF1 were significantly higher in CHD patients compared to controls (p < 0.05). Furthermore, METTL3 protein expression was also significantly elevated in the CHD group compared to the control group (p < 0.05). METTL3 gene expression correlated with HDL-C and Gensini score, while YTHDF1 gene expression correlated with Age, WBC, Neutrophils, RDW-CV, modified Gensini score. ROC curve analysis demonstrated an AUC of 0.692 for METTL3 in CHD, with a sensitivity of 66.7% and a specificity of 69.8% at a cut-off value of >0.052. The AUC for YTHDF1 in CHD was 0.623, with a sensitivity of 47.4% and a specificity of 74.4% at a cut-off value of >0.027. Binary logistic regression revealed that only increased METTL3 expression in peripheral blood was an independent risk factor for CHD (p < 0.05). Conclusions The increased expression of METTL3 in peripheral blood may serve as a potential biomarker and predictive factor for CHD.
Collapse
Affiliation(s)
- Jianshe Chang
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Liaoning Provincial Medicine and Engineering of Cardiovascular Fluid Dynamics, China Medical University, Shenyang, China
- Department of Cardiology, North China Medical Treatment Health Group, Fengfeng General Hospital, Handan, China
| | - Rui Shao
- Department of Intensive Care, North China Medical Treatment Health Group, Fengfeng General Hospital, Handan, China
| | - Xiangshan Xu
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Liaoning Provincial Medicine and Engineering of Cardiovascular Fluid Dynamics, China Medical University, Shenyang, China
| | - Yuanzhe Jin
- Department of Cardiology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Liaoning Provincial Medicine and Engineering of Cardiovascular Fluid Dynamics, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Chen H, Xing H, Zhong C, Lin X, Chen R, Luo N, Chen L, Huang Y. METTL3 confers protection against mitochondrial dysfunction and cognitive impairment in an Alzheimer disease mouse model by upregulating Mfn2 via N6-methyladenosine modification. J Neuropathol Exp Neurol 2024; 83:606-614. [PMID: 38408379 DOI: 10.1093/jnen/nlae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Mitofusin 2 (MFN2) has been found to be downregulated in patients with Alzheimer disease (AD) but little is known about its roles in the pathogenesis of AD. We explored the mechanism of N6-methyladenosine (m6A) methylation of Mfn2 in hippocampal mitochondrial dysfunction in an AD mouse model. APP/PS1 transgenic mice underwent stereotaxic injection of adeno-associated viruses and their behaviors were assessed. METTL3 and MFN2 expressions were measured by qRT-PCR and Western blot, accompanied by assessment of mitochondrial morphology, ATP, mitochondrial membrane potential, and amyloid-β content. Binding between METTL3 and MFN2, the total amount of m6A, and the m6A modification of Mfn2 were also determined. METTL3 and MFN2 were downregulated in hippocampal tissues of the AD model mice; METTL3 enhanced MFN2 expression via m6A modification. Overexpression of METTL3 or MFN2 ameliorated mitochondrial dysfunction indicated by fewer damaged mitochondria, increased ATP and JC-1 levels, and reduced Aβ content; improved cognitive impairment in the mice was indicated by the novel object discrimination index and Morris water maze tests. Effects of METTL3 overexpression were abrogated by further knockdown of MFN2. Thus, METTL3 ameliorated mitochondrial dysfunction and cognitive impairment in the AD model mice by increasing MFN2 expression via m6A modification.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Huaijie Xing
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Changhui Zhong
- Department of Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Xuejuan Lin
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Ruipeng Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Ning Luo
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Lijun Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Yusheng Huang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| |
Collapse
|
11
|
Zheng X, Zhou B, Li Y, Zhong H, Huang Z, Gu M. Transcriptome-wide N 6-methyladenosine methylation profile of atherosclerosis in mice. BMC Genomics 2023; 24:774. [PMID: 38097926 PMCID: PMC10720251 DOI: 10.1186/s12864-023-09878-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a critical pathological event during the progression of cardiovascular diseases. It exhibits fibrofatty lesions on the arterial wall and lacks effective treatment. N6-methyladenosine (m6A) is the most common modification of eukaryotic RNA and plays an important role in regulating the development and progression of cardiovascular diseases. However, the role of m6A modification in AS remains largely unknown. Therefore, in this study, we explored the transcriptome distribution of m6A modification in AS and its potential mechanism. METHODS Methylation Quantification Kit was used to detect the global m6A levels in the aorta of AS mice. Western blot was used to analyze the protein level of methyltransferases. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were used to obtain the first transcriptome range analysis of the m6A methylene map in the aorta of AS mice, followed by bioinformatics analysis. qRT-PCR and MeRIP-qRT-PCR were used to measure the mRNA and m6A levels in target genes. RESULTS The global m6A and protein levels of methyltransferase METTL3 were significantly increased in the aorta of AS mice. However, the protein level of demethylase ALKBH5 was significantly decreased. Through MeRIP-seq, we obtained m6A methylation maps in AS and control mice. In total, 26,918 m6A peaks associated with 13,744 genes were detected in AS group, whereas 26,157 m6A peaks associated with 13,283 genes were detected in the control group. Peaks mainly appeared in the coding sequence (CDS) regions close to the stop codon with the RRACH motif. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in AS-relevant pathways. Interestingly, a negative correlation between m6A methylation abundance and gene expression level was found through the integrated analysis of MeRIP-seq and RNA-seq data. Among the m6A-modified genes, a hypo-methylated but up-regulated (hypo-up) gene Fabp5 may be a potential biomarker of AS. CONCLUSIONS Our study provides transcriptome-wide m6A methylation for the first time to determine the association between m6A modification and AS progression. Our study lays a foundation for further exploring the pathogenesis of AS and provides a new direction for the treatment of AS.
Collapse
Affiliation(s)
- Xinbin Zheng
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Bo Zhou
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Yuzhen Li
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Hengren Zhong
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Zhengxin Huang
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China.
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China.
| | - Minhua Gu
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China.
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China.
| |
Collapse
|
12
|
Liang H, Fang C, Zhang L. Methyltransferase-like 3 facilitates the stem cell properties of esophageal cancer by upregulating patched homolog 1 via N6-methyladenosine methylation. Am J Physiol Cell Physiol 2023; 325:C770-C779. [PMID: 37575058 DOI: 10.1152/ajpcell.00136.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Patched homolog 1 (PTCH1) has been proven to facilitate cell proliferation and self-renewal in esophageal cancer (EC). The present study intended to exploit the influence of PTCH1 on EC cells and the potential mechanisms. PTCH1 and methyltransferase-like 3 (METTL3) expression were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot in EC cell lines. Following the loss- and gain-of-function assays, cell proliferation was examined by cell counting kit (CCK)-8 and clone formation assays, invasion and migration by Transwell and scratch assays, and the sphere-forming ability of stem cells by cell sphere-forming assay. The expression of stemness genes NANOG homeobox protein (NANOG), octamer-binding transcription factor 4 (Oct4), and sex-determining region Y-box 2 (SOX2) was detected by Western blot. Methylated RNA immunoprecipitation (Me-RIP) assay was performed to test N6-methyladenosine (m6A) modification levels of PTCH1 mRNA, RIP and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) assays to assess the binding of METTL3 to PTCH1, and actinomycin D treatment to examine PTCH1 mRNA stability. A xenograft tumor model in nude mice was established for further in vivo verification. PTCH1 and METTL3 expression was high in EC cells. Knockdown of METTL3 reduced m6A level and stability of PTCH1 mRNA. Knockdown of PTCH1 or METTL3 declined invasion, proliferation, migration, and NANOG, Oct4, and SOX2 levels in EC cells, and reduced sphere-forming abilities of EC stem cells. Overexpression of PTCH1 abolished the suppressive effect of METTL3 knockdown on EC cells in vitro. METTL3 knockdown repressed tumor growth in nude mice, which was negated by further overexpressing PTCH1. METTL3 facilitated growth and stemness of EC cells via upregulation of PTCH1 expression by enhancing PTCH1 m6A modification.NEW & NOTEWORTHY PTCH1 has been proved to facilitate cell proliferation and self-renewal in esophageal cancer. We studied the upstream regulation mechanism of PTCH1 by METTL3 through m6A modification. Our results provide a new target and theoretical basis for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Hao Liang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Chengyuan Fang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Luquan Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
13
|
Lazzarato L, Bianchi L, Andolfo A, Granata A, Lombardi M, Sinelli M, Rolando B, Carini M, Corsini A, Fruttero R, Arnaboldi L. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms. Molecules 2023; 28:5724. [PMID: 37570694 PMCID: PMC10420201 DOI: 10.3390/molecules28155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.
Collapse
Affiliation(s)
- Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy;
| | - Agnese Granata
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Lombardi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Matteo Sinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Marina Carini
- Department of Pharmaceutical Sciences “Pietro Pratesi”, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (L.L.); (B.R.); (R.F.)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (A.G.); (M.L.); (M.S.); (A.C.)
| |
Collapse
|
14
|
Yang X, Wang C, Zhu G, Guo Z, Fan L. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome. Exp Cell Res 2023; 427:113587. [PMID: 37044315 DOI: 10.1016/j.yexcr.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotypic switching contributes to VSMC proliferation and migration in atherosclerosis (AS). Nevertheless, the regulatory mechanism of VSMC phenotypic switching during AS progression is unclear. Here, the role and regulatory mechanism of UCHL5 in VSMC phenotypic switching during AS progression were investigated. METHODS ApoE-/- mice were fed with high fat diet to establish AS model in vivo. VSMCs stimulated by ox-LDL were used as AS cellular model. VSMC proliferation and migration were examined by CCK8 assay and transwell assay, respectively. The levels of pro-inflammatory cytokines were assessed using ELISA. The interactions between METTL14/YTHDF1, UCHL5 and NLRP3 were analyzed using RIP and/or dual-luciferase reporter gene and/or Co-IP assays. NLRP3 ubiquitination was analyzed by ubiquitination analysis. RESULTS UCHL5 was significantly upregulated in AS patients and ox-LDL-treated VSMCs. UCHL5 silencing ameliorated plaque formation and vascular remodeling in vivo and suppressed ox-LDL-induced VSMC proliferation, migration, inflammation and phenotypic switching in vitro. Moreover, METTL14 could increase UCHL5 mRNA m6A level and promoted UCHL5 expression by recruiting YTHDF1. Moreover, UCHL5 overexpression enhanced protein stability by deubiquitinating NLRP3. Rescue studies revealed that NLRP3 overexpression abrogated UCHL5 silencing-mediated biological effects in ox-LDL-treated VSMCs. CONCLUSION UCHL5 modified by METTL14/YTHDF1 axis could facilitate the inflammation and vascular remodeling in atherosclerosis by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Chen Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China.
| |
Collapse
|
15
|
Li Z, Meng X, Chen Y, Xu X, Guo J. N 6-methyladenosine (m 6A) writer METTL3 accelerates the apoptosis of vascular endothelial cells in high glucose. Heliyon 2023; 9:e13721. [PMID: 36873555 PMCID: PMC9976308 DOI: 10.1016/j.heliyon.2023.e13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies have shown that N6-methyladenosine (m6A) methylation, one of the most prevalent epigenetic modifications, is involved in diabetes mellitus. However, whether m6A regulates diabetic vascular endothelium injury is still elusive. Present research aimed to investigate the regulation and mechanism of m6A on vascular endothelium injury. Upregulation of METTL3 was observed in the high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs), following with the upregulation of m6A methylation level. Functionally, METTL3 silencing repressed the apoptosis and recovered the proliferation of HUVECs disposed by HG. Moreover, HG exposure upregulated the expression of suppressor of cytokine signaling3 (SOCS3). Mechanistically, METTL3 targeted the m6A site on SOCS3 mRNA, which positively regulated the mRNA stability of SOCS3. In conclusion, METTL3 silencing attenuated the HG-induced vascular endothelium cells injury via promoting SOCS3 stability. In conclusion, this research expands the understanding of m6A on vasculopathy in diabetes mellitus and provides a potential strategy for the protection of vascular endothelial injury.
Collapse
Affiliation(s)
- Zhenjin Li
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuying Meng
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaona Xu
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianchao Guo
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
16
|
m6A 'writer' KIAA1429 regulates the proliferation and migration of endothelial cells in atherosclerosis. Mol Biotechnol 2022:10.1007/s12033-022-00614-w. [PMID: 36463391 PMCID: PMC9734602 DOI: 10.1007/s12033-022-00614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Increasing evidences have illustrated the important role of N6-methyladenosine (m6A) in atherosclerosis (AS). However, the role of m6A modification in AS pathophysiological process is still unknown. Here, the present work tried to investigate the expression and function of m6A methyltransferase KIAA1429 in AS pathology and explored its undergoing m6A-dependent molecular mechanism. Results indicated that KIAA1429 remarkedly up-regulated in oxidative low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). KIAA1429 over-expression inhibited the proliferation/migration in ox-LDL-treated HUVECs, while, KIAA1429 knockdown up-regulated the proliferation and migration. Mechanistically, via m6A modification sites binding, ROCK2 mRNA was post-transcriptionally upregulated by KIAA1429 in response to Actinomycin D. Collectively, our study demonstrated the regulation of KIAA1429 on ox-LDL-induced HUVECs via m6A/ROCK2 pathway. These findings provide new insights for m6A-mediated epigenetics in AS.
Collapse
|
17
|
Zhang X, Deng S, Peng Y, Wei H, Tian Z. ALKBH5 inhibits TNF-α-induced apoptosis of HUVECs through Bcl-2 pathway. Open Med (Wars) 2022; 17:1092-1099. [PMID: 35799597 PMCID: PMC9202073 DOI: 10.1515/med-2022-0484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 01/02/2023] Open
Abstract
Abstract
The dysfunction and apoptosis of vascular endothelial cells are the initiating links in the formation of atherosclerosis. N6-methyladenosine (m6A) is an extremely extensive RNA methylation modification and its abnormality leads to the occurrence of various human diseases. In this study, we explored the effects of demethylase α-ketoglutarate-dependent dioxygenase ALKB homolog 5 (ALKBH5) on TNF-α-induced apoptosis of human umbilical vein endothelial cells (HUVECs). In TNF-α-treated HUVECs, the expression of ALKBH5 was significantly decreased. ALKBH5 overexpression promoted the proliferation and inhibited the apoptosis in TNF-α-treated HUVECs, suggesting that ALKBH5 had a protective effect on cell damage induced by TNF-α. Importantly, ALKBH5 promoted the expression of Bcl-2 in HUVECs. Bcl2 overexpression reduced the expression of Gadd45, Bax, and p21, which are transcriptionally activated by p53. But the expression of p53 has not been significantly affected, indicating that Bcl2 might regulate the apoptosis by inhibiting p53 downstream targets. In addition, ALKBH5 overexpression significantly increased the level of pri-miR-7 and decreased the level of miR-7. In conclusion, ALKBH5 attenuated the TNF-α-induced cell injury via promoting Bcl2 expression. Our research expands the understanding of the progression mechanism of atherosclerosis and provides a potential strategy for the protection of vascular endothelial injury.
Collapse
Affiliation(s)
- Xiaoshan Zhang
- Department of Cardiology, First School of Clinical Medicine College, Yangtze University , Hubei , China
| | - ShiBing Deng
- Department of Cardiology, First School of Clinical Medicine College, Yangtze University , Hubei , China
| | - Yang Peng
- Department of Cardiology, First School of Clinical Medicine College, Yangtze University , Hubei , China
| | - Han Wei
- Department of Cardiology, First School of Clinical Medicine College, Yangtze University , Hubei , China
| | - Zhiming Tian
- Department of Cardiology, First School of Clinical Medicine College, Yangtze University , No. 8, Hangkong Road, Jingzhou 434000 , Hubei , China
| |
Collapse
|
18
|
Ofusa K, Chijimatsu R, Ishii H. Techniques to detect epitranscriptomic marks. Am J Physiol Cell Physiol 2022; 322:C787-C793. [PMID: 35294846 DOI: 10.1152/ajpcell.00460.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Similar to epigenetic DNA modification, RNA can be methylated and altered for stability and processing. RNA modifications, i.e., epitranscriptomes involve three functions, that is, writing, erasing, and reading of marks. Methods for measurement and position detection are useful for the assessment of cellular function and human disease biomarkers. Since the first detection of pyrimidine 5-methylcytosine hundred years ago, numerous techniques have been developed to study the modifications of nucleotides, including RNAs. Recent studies focused on high throughput and direct measurements to investigate the precise function of epitranscriptomes, including the characterization of SARS-CoV-2. The current work presents an overview of the development of detection techniques for epitranscriptomic marks and updates recent progress on the related field.
Collapse
Affiliation(s)
- Ken Ofusa
- Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka, Japan.,Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryota Chijimatsu
- Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
19
|
Tang H, Zeng Z, Shang C, Li Q, Liu J. Epigenetic Regulation in Pathology of Atherosclerosis: A Novel Perspective. Front Genet 2022; 12:810689. [PMID: 34976029 PMCID: PMC8714670 DOI: 10.3389/fgene.2021.810689] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, characterized by atherosclerotic plaques, is a complex pathological process that involves different cell types and can be seen as a chronic inflammatory disease. In the advanced stage, the ruptured atherosclerotic plaque can induce deadly accidents including ischemic stroke and myocardial infarction. Epigenetics regulation, including DNA methylation, histone modification, and non-coding RNA modification. maintains cellular identity via affecting the cellular transcriptome. The epigenetic modification process, mediating by epigenetic enzymes, is dynamic under various stimuli, which can be reversely altered. Recently, numerous studies have evidenced the close relationship between atherosclerosis and epigenetic regulations in atherosclerosis, providing us with a novel perspective in researching mechanisms and finding novel therapeutic targets of this serious disease. Here, we critically review the recent discoveries between epigenetic regulation mechanisms in atherosclerosis.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Zhangwei Zeng
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Chenghao Shang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|