1
|
Sallah S, Warwicker J. Computational investigation of missense somatic mutations in cancer and potential links to pH-dependence and proteostasis. PLoS One 2024; 19:e0314022. [PMID: 39561123 PMCID: PMC11575792 DOI: 10.1371/journal.pone.0314022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Metabolic changes during tumour development lead to acidification of the extracellular environment and a smaller increase of intracellular pH. Searches for somatic missense mutations that could reveal adaptation to altered pH have focussed on arginine to histidine changes, part of a general arginine depletion that originates from DNA mutational mechanisms. Analysis of mutations to histidine, potentially a simple route to the introduction of pH-sensing, shows no clear biophysical separation overall of subsets that are more and less frequently mutated in cancer genomes. Within the more frequently mutated subset, individual sites predicted to mediate pH-dependence upon mutation include NDST1 (a Golgi-resident heparan sulphate modifying enzyme), the HLA-C chain of MHCI complex, and the water channel AQP-7. Arginine depletion is a general feature that persists in the more frequently mutated subset, and is complemented by over-representation of mutations to lysine. Arginine to lysine balance is a known factor in determining protein solubility, with higher lysine content being more favourable. Proteins with greater change in arginine to lysine balance are enriched for cell periphery location, where proteostasis is likely to be challenged in tumour cells. Somatic missense mutations in a cancer genome number only in the 10s typically, although can be much higher. Whether the altered arginine to lysine balance is of sufficient scale to play a role in tumour development is unknown.
Collapse
Affiliation(s)
- Shalaw Sallah
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Chen X, Zhang Z, Qin Z, Zhu X, Wang K, Kang L, Li C, Wang H. Identification and validation of a novel signature based on macrophage marker genes for predicting prognosis and drug response in kidney renal clear cell carcinoma by integrated analysis of single cell and bulk RNA sequencing. Aging (Albany NY) 2024; 16:5676-5702. [PMID: 38517387 PMCID: PMC11006469 DOI: 10.18632/aging.205671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Macrophages are found in a variety of tumors and play a critical role in shaping the tumor microenvironment, affecting tumor progression, metastasis, and drug resistance. However, the clinical relevance of marker genes associated with macrophage in kidney renal clear cell carcinoma (KIRC) has yet to be documented. In this study, we initiated a thorough examination of single-cell RNA sequencing (scRNA-seq) data for KIRC retrieved from the Gene Expression Omnibus (GEO) database and determined 244 macrophage marker genes (MMGs). Univariate analysis, LASSO regression, and multivariate regression analysis were performed to develop a five-gene prognostic signature in The Cancer Genome Atlas (TCGA) database, which could divide KIRC patients into low-risk (L-R) and high-risk (H-R) groups. Then, a nomogram was constructed to predict the survival rate of KIRC patients at 1, 3, and 5 years, which was well assessed by receiver operating characteristic curve (ROC), calibration curve, and decision curve analyses (DCA). Functional enrichment analysis showed that immune-related pathways (such as immunoglobulin complex, immunoglobulin receptor binding, and cytokine-cytokine receptor interaction) were mainly enriched in the H-R group. Additionally, in comparison to the L-R cohort, patients belonging to the H-R cohort exhibited increased immune cell infiltration, elevated expression of immune checkpoint genes (ICGs), and a higher tumor immune dysfunction and exclusion (TIDE) score. This means that patients in the H-R group may be less sensitive to immunotherapy than those in the L-R group. Finally, IFI30 was validated to increase the ability of KIRC cells to proliferate, invade and migrate in vitro. In summary, our team has for the first time developed and validated a predictive model based on macrophage marker genes to accurately predict overall survival (OS), immune characteristics, and treatment benefit in KIRC patients.
Collapse
Affiliation(s)
- Xiaoxu Chen
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheyu Zhang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng Qin
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiao Zhu
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kaibin Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lijuan Kang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changying Li
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Boussios S, Devo P, Goodall ICA, Sirlantzis K, Ghose A, Shinde SD, Papadopoulos V, Sanchez E, Rassy E, Ovsepian SV. Exosomes in the Diagnosis and Treatment of Renal Cell Cancer. Int J Mol Sci 2023; 24:14356. [PMID: 37762660 PMCID: PMC10531522 DOI: 10.3390/ijms241814356] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most prevalent type of kidney cancer originating from renal tubular epithelial cells, with clear cell RCC comprising approximately 80% of cases. The primary treatment modalities for RCC are surgery and targeted therapy, albeit with suboptimal efficacies. Despite progress in RCC research, significant challenges persist, including advanced distant metastasis, delayed diagnosis, and drug resistance. Growing evidence suggests that extracellular vesicles (EVs) play a pivotal role in multiple aspects of RCC, including tumorigenesis, metastasis, immune evasion, and drug response. These membrane-bound vesicles are released into the extracellular environment by nearly all cell types and are capable of transferring various bioactive molecules, including RNA, DNA, proteins, and lipids, aiding intercellular communication. The molecular cargo carried by EVs renders them an attractive resource for biomarker identification, while their multifarious role in the RCC offers opportunities for diagnosis and targeted interventions, including EV-based therapies. As the most versatile type of EVs, exosomes have attracted much attention as nanocarriers of biologicals, with multi-range signaling effects. Despite the growing interest in exosomes, there is currently no widely accepted consensus on their subtypes and properties. The emerging heterogeneity of exosomes presents both methodological challenges and exciting opportunities for diagnostic and clinical interventions. This article reviews the characteristics and functions of exosomes, with a particular reference to the recent advances in their application to the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| | - Perry Devo
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Iain C. A. Goodall
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Konstantinos Sirlantzis
- School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, London, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | | | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Saak V. Ovsepian
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| |
Collapse
|
4
|
Zhang W, He Y, Tang Y, Dai W, Si Y, Mao F, Xu J, Yu C, Sun X. A meta-analysis of application of PD-1/PD-L1 inhibitor-based immunotherapy in unresectable locally advanced triple-negative breast cancer. Immunotherapy 2023; 15:1073-1088. [PMID: 37337734 DOI: 10.2217/imt-2023-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aims: The purpose of this study was to explore the efficacy of immunotherapy for patients with triple-negative breast cancer (TNBC). Materials & methods: Randomized clinical trials comparing immunotherapy with chemotherapy for advanced TNBC patients were included. Results: A total of six articles (3183 patients) were eligible for this meta-analysis. PD-1/PD-L1 inhibitor-based immunotherapy combined with chemotherapy can significantly increase the progression-free survival (hazard ratio [HR] = 0.82; 95% CI = 0.76-1.14; p < 0.001) of unresectable locally advanced or metastatic TNBC patients without effect on overall survival, compared with chemotherapy. Conclusion: PD-1/PD-L1 inhibitors-based immunotherapy can safely improve progression-free survival in patients with unresectable locally advanced or metastatic TNBC, but has no effect on overall survival.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuning Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Wei Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Feiyan Mao
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chiyuan Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xing Sun
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
5
|
Shi X, Pang Q, Nian X, Jiang A, Shi H, Liu W, Gan X, Gao Y, Yang Y, Ji J, Tan X, Xiao C, Zhang W. Integrative transcriptome and proteome analyses of clear cell renal cell carcinoma develop a prognostic classifier associated with thrombus. Sci Rep 2023; 13:9778. [PMID: 37328520 PMCID: PMC10276054 DOI: 10.1038/s41598-023-36978-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) with venous tumor thrombus (VTT) is associated with poor prognosis. Our integrative analyses of transcriptome and proteome reveal distinctive molecular features of ccRCC with VTT, and yield the development of a prognostic classifier to facilitate ccRCC molecular subtyping and treatment. The RNA sequencing and mass spectrometry were performed in normal-tumor-thrombus tissue triples of five ccRCC patients. Statistical analysis, GO and KEGG enrichment analysis, and protein-protein interaction network construction were used to interpret the transcriptomic and proteomic data. A six-gene-based classifier was developed to predict patients' survival using Cox regression, which was validated in an independent cohort. Transcriptomic analysis identified 1131 tumorigenesis-associated differentially expressed genes (DEGs) and 856 invasion-associated DEGs. Overexpression of transcription factor EGR2 in VTT indicated its important role in tumor invasion. Furthermore, proteomic analysis showed 597 tumorigenesis-associated differentially expressed proteins (DEPs) and 452 invasion-associated DEPs. The invasion-associated DEPs showed unique enrichment in DNA replication, lysine degradation, and PPAR signaling pathway. Integration of transcriptome and proteome reveals 142 tumorigenesis-associated proteins and 84 invasion-associated proteins displaying changes consistent with corresponding genes in transcriptomic profiling. Based on their different expression patterns among normal-tumor-thrombus triples, RAB25 and GGT5 were supposed to play a consistent role in both tumorigenesis and invasion processes, while SHMT2 and CADM4 might play the opposite roles in tumorigenesis and thrombus invasion. A prognostic classifier consisting of six DEGs (DEPTOR, DPEP1, NAT8, PLOD2, SLC7A5, SUSD2) performed satisfactorily in predicting survival of ccRCC patients (HR = 4.41, P < 0.001), which was further validated in an independent cohort of 40 cases (HR = 5.52, P = 0.026). Our study revealed the transcriptomic and proteomic profiles of ccRCC patients with VTT, and identified the distinctive molecular features associated with VTT. The six-gene-based prognostic classifier developed by integrative analyses may facilitate ccRCC molecular subtyping and treatment.
Collapse
Affiliation(s)
- Xiaolei Shi
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Qingyang Pang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Xinwen Nian
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Haoqing Shi
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yisha Gao
- Department of Pathology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Yiren Yang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Jin Ji
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China
| | - Xiaojie Tan
- Department of Epidemiology, Naval Medical University, 800 Xiangyin Rd, Shanghai, 200433, China
| | - Chengwu Xiao
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China.
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Rd, Shanghai, 200433, China.
| |
Collapse
|
6
|
Kehrberg RJ, Bhyravbhatla N, Batra SK, Kumar S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim Biophys Acta Rev Cancer 2023; 1878:188901. [PMID: 37120098 PMCID: PMC10375465 DOI: 10.1016/j.bbcan.2023.188901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a significant component of the tumor microenvironment (TME), contribute to cancer progression through the secretion of extracellular matrix (ECM), growth factors, and metabolites. It is now well recognized that CAFs are a heterogenous population with ablation experiments leading to reduced tumor growth and single-cell RNA sequencing demonstrating CAF subgroups. CAFs lack genetic mutations yet substantially differ from their normal stromal precursors. Here, we review epigenetic changes in CAF maturation, focusing on DNA methylation and histone modifications. DNA methylation changes in CAFs have been demonstrated globally, while roles of methylation at specific genes affect tumor growth. Further, loss of CAF histone methylation and gain of histone acetylation has been shown to promote CAF activation and tumor promotion. Many CAF activating factors, such as transforming growth factor β (TGFβ), lead to these epigenetic changes. MicroRNAs (miRNAs) serve as targets and orchestrators of epigenetic modifications that influence gene expression. Bromodomain and extra-terminal domain (BET), an epigenetic reader, recognizes histone acetylation and activates the transcription of genes leading to the pro-tumor phenotype of CAFs.
Collapse
Affiliation(s)
- Rachel J Kehrberg
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Jiang T, Zhu Z, Zhang J, Chen M, Chen S. Role of tumor-derived exosomes in metastasis, drug resistance and diagnosis of clear cell renal cell carcinoma. Front Oncol 2022; 12:1066288. [PMID: 36620603 PMCID: PMC9810999 DOI: 10.3389/fonc.2022.1066288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Renal cancer is one of the most extensively studied human tumors today, with clear cell renal cell carcinoma accounting for approximately 80% of all cases. Despite recent advances in research on clear cell renal cell carcinoma, advanced distant metastasis of the disease, delay in diagnosis, as well as drug resistance remain major problems. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, exosomes have attracted widespread attention for their role in tumor development. It has been reported that tumor-derived exosomes may act as regulators and have an important effect on the metastasis, drug resistance formation, and providing targets for early diagnosis of clear cell renal cell carcinoma. Therefore, the extensive study of tumour-derived exosomes will provide a meaningful reference for the development of the diagnostic and therapeutic field of clear cell renal cell carcinoma. This article reviews the biological role and research progress of tumor-derived exosomes in different aspects of premetastatic niche formation, tumor angiogenesis, and epithelial-mesenchymal transition during the progression of clear cell renal cell carcinoma. In addition, the role of tumor-derived exosomes in the development of drug resistance in clear cell renal cell carcinoma is also addressed in this review. Furthermore, recent studies have found that cargoes of exosomes in serum and urine, for example, a series of miRNAs, have the potential to be biological markers of clear cell renal cell carcinoma and provide meaningful targets for early diagnosis and monitoring of tumors, which is also covered in this article.
Collapse
Affiliation(s)
- Tiancheng Jiang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Zepeng Zhu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Jiawei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Department of Medical College, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Chen M, Nie Z, Gao Y, Cao H, Zheng L, Guo N, Peng Y, Zhang S. m7G regulator-mediated molecular subtypes and tumor microenvironment in kidney renal clear cell carcinoma. Front Pharmacol 2022; 13:900006. [PMID: 36147333 PMCID: PMC9486008 DOI: 10.3389/fphar.2022.900006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: RNA methylation modification plays an important role in immune regulation. m7G RNA methylation is an emerging research hotspot in the RNA methylation field. However, its role in the tumor immune microenvironment of kidney renal clear cell carcinoma (KIRC) is still unclear. Methods: We analyzed the expression profiles of 29 m7G regulators in KIRC, integrated multiple datasets to identify a novel m7G regulator-mediated molecular subtype, and developed the m7G score. We evaluated the immune tumor microenvironments in m7G clusters and analyzed the correlation of the m7G score with immune cells and drug sensitivity. We tested the predictive power of the m7G score for prognosis of patients with KIRC and verified the predictive accuracy of the m7G score by using the GSE40912 and E-MTAB-1980 datasets. The genes used to develop the m7G score were verified by qRT-PCR. Finally, we experimentally analyzed the effects of WDR4 knockdown on KIRC proliferation, migration, invasion, and drug sensitivity. Results: We identified three m7G clusters. The expression of m7G regulators was higher in cluster C than in other clusters. m7G cluster C was related to immune activation, low tumor purity, good prognosis, and low m7G score. Cluster B was related to drug metabolism, high tumor purity, poor survival, and high m7G score. Cluster A was related to purine metabolism. The m7G score can well-predict the prognosis of patients with KIRC, and its prediction accuracy based on the m7G score nomogram was very high. Patients with high m7G scores were more sensitive to rapamycin, gefitinib, sunitinib, and vinblastine than other patients. Knocking down WDR4 can inhibit the proliferation, migration, and invasion of 786-0 and Caki-1 cells and increase sensitivity to sorafenib and sunitinib. Conclusion: We proposed a novel molecular subtype related to m7G modification and revealed the immune cell infiltration characteristics of different subtypes. The developed m7G score can well-predict the prognosis of patients with KIRC, and our research provides a basis for personalized treatment of patients with KIRC.
Collapse
|