1
|
Matveevsky S. The Germline-Restricted Chromosome of Male Zebra Finches in Meiotic Prophase I: A Proteinaceous Scaffold and Chromatin Modifications. Animals (Basel) 2024; 14:3246. [PMID: 39595299 PMCID: PMC11591414 DOI: 10.3390/ani14223246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Among eukaryotes, there are many examples of partial genome elimination during ontogenesis. A striking example of this phenomenon is the loss of entire avian chromosomes during meiosis, called a germline-restricted chromosome (GRC). The GRC is absent in somatic tissues but present in germ cells. It has been established that a prophase I male GRC is usually represented by a univalent surrounded by heterochromatin. In the present study, an immunocytochemical analysis of zebra finch spermatocytes was performed to focus on some details of this chromosome's organization. For the first time, it was shown that a prophase I GRC contains the HORMAD1 protein, which participates in the formation of a full axial element. This GRC axial element has signs of a delay of core protein loading, probably owing to peculiarities of meiotic silencing of chromatin. The presence of repressive marks (H3K9me3 and H3K27me3) and the lack of RNA polymerase II, typically associated with active transcription, indicate transcriptional inactivation in the GRC body, despite the known activity of some genes of the GRC. Nevertheless, RPA and RAD51 proteins were found at some GRC sites, indicating the formation and repair of double-strand breaks on this chromosome. Our results provide new insights into the meiotic behavior and structure of a GRC.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Borodin PM. Germline-restricted chromosomes of the songbirds. Vavilovskii Zhurnal Genet Selektsii 2023; 27:641-650. [PMID: 38023808 PMCID: PMC10643108 DOI: 10.18699/vjgb-23-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Germline-restricted chromosomes (GRCs) are present in the genomes of germline cells and absent from somatic cells. A GRC is found in all species of the songbirds (Passeri) and in none of the other bird orders studied to date. This indicates that GRC originated in the common ancestor of the songbirds. The germline-restricted chromosome is permanently absent from somatic cells of the songbird, while female germline cells usually contain two copies of GRC and male ones have one copy. In females, GRCs undergo synapsis and restricted recombination in their terminal regions during meiotic prophase. In males, it is almost always eliminated from spermatocytes. Thus, GRC is inherited almost exclusively through the maternal lineage. The germline-restricted chromosome is a necessary genomic element in the germline cells of songbirds. To date, the GRC genetic composition has been studied in four species only. Some GRC genes are actively expressed in female and male gonads, controlling the development of germline cells and synthesis of the proteins involved in the organization of meiotic chromosomes. Songbird species vary in GRC size and genetic composition. The GRC of each bird species consists of amplified and modified copies of genes from the basic genome of that species. The level of homology between GRCs of different species is relatively low, indicating a high rate of genetic evolution of this chromosome. Transmission through the maternal lineage and suppression of the recombination contribute significantly to the accelerated evolution of GRCs. One may suggest that the rapid coordinated evolution between the GRC genes and the genes of the basic genome in the songbirds might be responsible for the explosive speciation and adaptive radiation of this most species-rich and diverse infraorder of birds.
Collapse
Affiliation(s)
- P M Borodin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Schlebusch SA, Rídl J, Poignet M, Ruiz-Ruano FJ, Reif J, Pajer P, Pačes J, Albrecht T, Suh A, Reifová R. Rapid gene content turnover on the germline-restricted chromosome in songbirds. Nat Commun 2023; 14:4579. [PMID: 37516764 PMCID: PMC10387091 DOI: 10.1038/s41467-023-40308-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
The germline-restricted chromosome (GRC) of songbirds represents a taxonomically widespread example of programmed DNA elimination. Despite its apparent indispensability, we still know very little about the GRC's genetic composition, function, and evolutionary significance. Here we assemble the GRC in two closely related species, the common and thrush nightingale. In total we identify 192 genes across the two GRCs, with many of them present in multiple copies. Interestingly, the GRC appears to be under little selective pressure, with the genetic content differing dramatically between the two species and many GRC genes appearing to be pseudogenized fragments. Only one gene, cpeb1, has a complete coding region in all examined individuals of the two species and shows no copy number variation. The acquisition of this gene by the GRC corresponds with the earliest estimates of the GRC origin, making it a good candidate for the functional indispensability of the GRC in songbirds.
Collapse
Affiliation(s)
- Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jakub Rídl
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Manon Poignet
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01, Prague 6, San Antonio, Czech Republic
| | - Jan Pačes
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Mueller JC, Schlebusch SA, Pei Y, Poignet M, Vontzou N, Ruiz-Ruano FJ, Albrecht T, Reifová R, Forstmeier W, Suh A, Kempenaers B. Micro Germline-Restricted Chromosome in Blue Tits: Evidence for Meiotic Functions. Mol Biol Evol 2023; 40:msad096. [PMID: 37116210 PMCID: PMC10172847 DOI: 10.1093/molbev/msad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
The germline-restricted chromosome (GRC) is likely present in all songbird species but differs widely in size and gene content. This extra chromosome has been described as either a microchromosome with only limited basic gene content or a macrochromosome with enriched gene functions related to female gonad and embryo development. Here, we assembled, annotated, and characterized the first micro-GRC in the blue tit (Cyanistes caeruleus) using high-fidelity long-read sequencing data. Although some genes on the blue tit GRC show signals of pseudogenization, others potentially have important functions, either currently or in the past. We highlight the GRC gene paralog BMP15, which is among the highest expressed GRC genes both in blue tits and in zebra finches (Taeniopygia guttata) and is known to play a role in oocyte and follicular maturation in other vertebrates. The GRC genes of the blue tit are further enriched for functions related to the synaptonemal complex. We found a similar functional enrichment when analyzing published data on GRC genes from two nightingale species (Luscinia spp.). We hypothesize that these genes play a role in maintaining standard maternal inheritance or in recombining maternal and paternal GRCs during potential episodes of biparental inheritance.
Collapse
Affiliation(s)
- Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | - Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Manon Poignet
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Niki Vontzou
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tomáš Albrecht
- Department of Zoology, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic
| | - Radka Reifová
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Organismal Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
5
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Reece AS, Hulse GK. Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7726. [PMID: 35805384 PMCID: PMC9265369 DOI: 10.3390/ijerph19137726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
The use of Δ8THC is increasing at present across the USA in association with widespread cannabis legalization and the common notion that it is "legal weed". As genotoxic actions have been described for many cannabinoids, we studied the cancer epidemiology of Δ8THC. Data on 34 cancer types was from the Centers for Disease Control Atlanta Georgia, substance abuse data from the Substance Abuse and Mental Health Services Administration, ethnicity and income data from the U.S. Census Bureau, and cannabinoid concentration data from the Drug Enforcement Agency, were combined and processed in R. Eight cancers (corpus uteri, liver, gastric cardia, breast and post-menopausal breast, anorectum, pancreas, and thyroid) were related to Δ8THC exposure on bivariate testing, and 18 (additionally, stomach, Hodgkins, and Non-Hodgkins lymphomas, ovary, cervix uteri, gall bladder, oropharynx, bladder, lung, esophagus, colorectal cancer, and all cancers (excluding non-melanoma skin cancer)) demonstrated positive average marginal effects on fully adjusted inverse probability weighted interactive panel regression. Many minimum E-Values (mEVs) were infinite. p-values rose from 8.04 × 10-78. Marginal effect calculations revealed that 18 Δ8THC-related cancers are predicted to lead to a further 8.58 cases/100,000 compared to 7.93 for alcoholism and -8.48 for tobacco. Results indicate that between 8 and 20/34 cancer types were associated with Δ8THC exposure, with very high effect sizes (mEVs) and marginal effects after adjustment exceeding tobacco and alcohol, fulfilling the epidemiological criteria of causality and suggesting a cannabinoid class effect. The inclusion of pediatric leukemias and testicular cancer herein demonstrates heritable malignant teratogenesis.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
7
|
Borodin P, Chen A, Forstmeier W, Fouché S, Malinovskaya L, Pei Y, Reifová R, Ruiz-Ruano FJ, Schlebusch SA, Sotelo-Muñoz M, Torgasheva A, Vontzou N, Suh A. Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res 2022; 30:255-272. [PMID: 35416568 PMCID: PMC9508068 DOI: 10.1007/s10577-022-09688-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
Abstract
Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.
Collapse
Affiliation(s)
- Pavel Borodin
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia
| | - Augustin Chen
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319, Seewiesen, Germany.
| | - Simone Fouché
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Lyubov Malinovskaya
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia
| | - Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319, Seewiesen, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Francisco J Ruiz-Ruano
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Manuelita Sotelo-Muñoz
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Anna Torgasheva
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia.
| | - Niki Vontzou
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden. .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
8
|
Sotelo-Muñoz M, Poignet M, Albrecht T, Kauzál O, Dedukh D, Schlebusch SA, Janko K, Reifová R. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma 2022; 131:77-86. [PMID: 35389062 DOI: 10.1007/s00412-022-00771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.
Collapse
Affiliation(s)
- Manuelita Sotelo-Muñoz
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| | - Manon Poignet
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| |
Collapse
|
9
|
Kloc M, Kubiak JZ, Ghobrial RM. Natural genetic engineering: A programmed chromosome/DNA elimination. Dev Biol 2022; 486:15-25. [DOI: 10.1016/j.ydbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|