1
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, El-Huneidi W, Saleh MA, Alzoubi KH, Semreen MH, Hudaib M, Bustanji Y. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals (Basel) 2024; 17:195. [PMID: 38399410 PMCID: PMC10892333 DOI: 10.3390/ph17020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key regulator for balancing oxygen in the cells. It is a transcription factor that regulates the expression of target genes involved in oxygen homeostasis in response to hypoxia. Recently, research has demonstrated the multiple roles of HIF-1 in the pathophysiology of various diseases, including cancer. It is a crucial mediator of the hypoxic response and regulator of oxygen metabolism, thus contributing to tumor development and progression. Studies showed that the expression of the HIF-1α subunit is significantly upregulated in cancer cells and promotes tumor survival by multiple mechanisms. In addition, HIF-1 has potential contributing roles in cancer progression, including cell division, survival, proliferation, angiogenesis, and metastasis. Moreover, HIF-1 has a role in regulating cellular metabolic pathways, particularly the anaerobic metabolism of glucose. Given its significant and potential roles in cancer development and progression, it has been an intriguing therapeutic target for cancer research. Several compounds targeting HIF-1-associated processes are now being used to treat different types of cancer. This review outlines emerging therapeutic strategies that target HIF-1 as well as the relevance and regulation of the HIF-1 pathways in cancer. Moreover, it addresses the employment of nanotechnology in developing these promising strategies.
Collapse
Affiliation(s)
- Reem A. Qannita
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ayah I. Alalami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shereen M. Aleidi
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Hudaib
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| |
Collapse
|
3
|
Vishnyakova P, Gantsova E, Kiseleva V, Lazarev D, Knyazev E, Poltavets A, Iskusnykh M, Muminova K, Potapova A, Khodzhaeva Z, Elchaninov A, Fatkhudinov T, Sukhikh G. MicroRNA miR-27a as a possible regulator of anti-inflammatory macrophage phenotype in preeclamptic placenta. Placenta 2024; 145:151-161. [PMID: 38141416 DOI: 10.1016/j.placenta.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION The role of the TGFβ signaling pathway, an important cascade responsible for the anti-inflammatory polarization of macrophages, in the development of both early- and late-onset preeclampsia (eoPE and loPE), remains poorly understood. In this study, we examined the components of the TGFβ signaling cascade and macrophage markers within placental tissue in normal pregnancy and in PE. METHODS Patients with eoPE, loPE, and normal pregnancy were enrolled in the study (n = 10 in each group). Following techniques were used for the investigation: immunohistochemistry analysis, western blotting, qRT-PCR, isolation of monocytes by magnetic sorting, transfection, microRNA sequencing, and bioinformatic analysis. RESULTS We observed a significant decrease in the anti-inflammatory macrophage marker CD206 in the loPE group, alongside with a significant down-regulation of CD206 protein production in both eoPE and loPE groups. The level of CD68-positive cells and relative levels of CD163 and MARCO production were comparable across the groups. However, we identified a significant decrease in the TGFβ receptor 2 production and its gene expression in the PE group. Further analysis revealed a link between TGFBR2 and MRC1 (CD206) genes through a single miRNA, hsa-miR-27a-3p. Transfecting CD14-derived macrophages with the hsa-miR-27a-3p mimic significantly changed TGFBR2 production, indicating the potential role of this miRNA in regulating the TGFβ signaling pathway. We also revealed the up-regulation of hsa-miR-27a-5p and hsa-miR-27a-3p in the trophoblast BeWo b30 cell line under the severe hypoxia condition and the fact that TGFBR2 3' UTR could serve as a potential target for these miRNAs. DISCUSSION Our findings uncover a novel potential therapeutic target for managing patients with PE, significantly contributing to a deeper comprehension of the underlying mechanisms involved in the development of this pathology.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia.
| | - Elena Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Dmitry Lazarev
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Marina Iskusnykh
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia; Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Li S, Long Q, Nong L, Zheng Y, Meng X, Zhu Q. Identification of immune infiltration and cuproptosis-related molecular clusters in tuberculosis. Front Immunol 2023; 14:1205741. [PMID: 37497230 PMCID: PMC10366538 DOI: 10.3389/fimmu.2023.1205741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Background Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection. Cuproptosis is a novel cell death mechanism correlated with various diseases. This study sought to elucidate the role of cuproptosis-related genes (CRGs) in TB. Methods Based on the GSE83456 dataset, we analyzed the expression profiles of CRGs and immune cell infiltration in TB. Based on CRGs, the molecular clusters and related immune cell infiltration were explored using 92 TB samples. The Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was utilized to identify the co-expression modules and cluster-specific differentially expressed genes. Subsequently, the optimal machine learning model was determined by comparing the performance of the random forest (RF), support vector machine (SVM), generalized linear model (GLM), and eXtreme Gradient Boosting (XGB). The predictive performance of the machine learning model was assessed by generating calibration curves and decision curve analysis and validated in an external dataset. Results 11 CRGs were identified as differentially expressed cuproptosis genes. Significant differences in immune cells were observed in TB patients. Two cuproptosis-related molecular clusters expressed genes were identified. Distinct clusters were identified based on the differential expression of CRGs and immune cells. Besides, significant differences in biological functions and pathway activities were observed between the two clusters. A nomogram was generated to facilitate clinical implementation. Next, calibration curves were generated, and decision curve analysis was conducted to validate the accuracy of our model in predicting TB subtypes. XGB machine learning model yielded the best performance in distinguishing TB patients with different clusters. The top five genes from the XGB model were selected as predictor genes. The XGB model exhibited satisfactory performance during validation in an external dataset. Further analysis revealed that these five model-related genes were significantly associated with latent and active TB. Conclusion Our study provided hitherto undocumented evidence of the relationship between cuproptosis and TB and established an optimal machine learning model to evaluate the TB subtypes and latent and active TB patients.
Collapse
Affiliation(s)
- Sijun Li
- Infectious Disease Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Qian Long
- Department of Clinical Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Lanwei Nong
- Infectious Disease Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Yanqing Zheng
- Infectious Disease Laboratory, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Xiayan Meng
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, China
| | - Qingdong Zhu
- Department of Tuberculosis, The Fourth People’s Hospital of Nanning, Nanning, China
| |
Collapse
|
5
|
Knyazev EN, Kalinin RS, Abrikosova VA, Mokrushina YA, Tonevitskaya SA. KDM5 Family Demethylase Inhibitor KDOAM-25 Reduces Entry of SARS-CoV-2 Pseudotyped Viral Particles into Cells. Bull Exp Biol Med 2023:10.1007/s10517-023-05827-w. [PMID: 37336812 DOI: 10.1007/s10517-023-05827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 06/21/2023]
Abstract
We studied the effect of KDM5 family demethylase inhibitors (JIB-04, PBIT, and KDOAM-25) on the penetration of SARS-CoV-2 pseudotyped viruses into differentiated Caco-2 cells and HEK293T cells with ACE2 hyperexpression. The above drugs were not cytotoxic. Only KDOAM-25 significantly reduced virus entry into the cells. The expression of ACE2 mRNA in Caco-2 significantly increased, while TMPRSS2 expression did not significantly change under these conditions. In differentiated Caco-2 cells, KDOAM-25 did not affect the expression of BRCA1, CDH1, TP53, SNAI1, VIM, and UGCG genes, for which an association with knockdown or overexpression of KDM5 demethylases or with the action of demethylase inhibitors had previously been shown. In undifferentiated Caco-2 cells, the expression of BRCA1, SNAI1, VIM, and CDH1 was significantly increased under the action of KDOAM-25.
Collapse
Affiliation(s)
- E N Knyazev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia.
| | - R S Kalinin
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V A Abrikosova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yu A Mokrushina
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - S A Tonevitskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
6
|
Richard N, Savoye G, Leboutte M, Amamou A, Ghosh S, Marion-Letellier R. Crohn’s disease: Why the ileum? World J Gastroenterol 2023; 29:3222-3240. [PMID: 37377591 PMCID: PMC10292140 DOI: 10.3748/wjg.v29.i21.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Crohn’s disease (CD) is an inflammatory bowel disease characterized by immune-mediated flares affecting any region of the intestine alternating with remission periods. In CD, the ileum is frequently affected and about one third of patients presents with a pure ileal type. Moreover, the ileal type of CD presents epidemiological specificities like a younger age at onset and often a strong link with smoking and genetic susceptibility genes. Most of these genes are associated with Paneth cell dysfunction, a cell type found in the intestinal crypts of the ileum. Besides, a Western-type diet is associated in epidemiological studies with CD onset and increasing evidence shows that diet can modulate the composition of bile acids and gut microbiota, which in turn modulates the susceptibility of the ileum to inflammation. Thus, the interplay between environmental factors and the histological and anatomical features of the ileum is thought to explain the specific transcriptome profile observed in CD ileitis. Indeed, both immune response and cellular healing processes harbour differences between ileal and non-ileal CD. Taken together, these findings advocate for a dedicated therapeutic approach to managing ileal CD. Currently, interventional pharmacological studies have failed to clearly demonstrate distinct response profiles according to disease site. However, the high rate of stricturing disease in ileal CD requires the identification of new therapeutic targets to significantly change the natural history of this debilitating disease.
Collapse
Affiliation(s)
- Nicolas Richard
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- CHU Rouen, Department of Gastroenterology, Rouen University Hospital-Charles Nicolle, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| | - Guillaume Savoye
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- CHU Rouen, Department of Gastroenterology, Rouen University Hospital-Charles Nicolle, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| | - Mathilde Leboutte
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| | - Asma Amamou
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork T12 YT20, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork T12 YT20, Ireland
| | - Rachel Marion-Letellier
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| |
Collapse
|
7
|
Cushing KC, Chen Y, Du X, Chen V, Kuppa A, Higgins P, Speliotes EK. Risk Variants in or Near ZBTB40 AND NFATC1 Increase the Risk of Both IBD and Adverse Bone Health Outcomes Highlighting Common Genetic Underpinnings Across Both Diseases. Inflamm Bowel Dis 2023; 29:938-945. [PMID: 36680554 PMCID: PMC10465078 DOI: 10.1093/ibd/izac273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is associated with an increased risk of osteoporosis and bone fracture. The aims of this study were to (1) confirm the association between IBD and low bone density and (2) test for shared risk variants across diseases. METHODS The study cohort included patients from the Michigan Genomics Initiative. Student's t tests (continuous) and chi-square tests (categorical) were used for univariate analyses. Multivariable logistic regression was performed to test the effect of IBD on osteoporosis or osteopenia. Publicly available genome-wide association summary statistics were used to identify variants that alter the risk of IBD and bone density, and Mendelian randomization (MR) was used to identify causal effects of genetically predicted IBD on bone density. RESULTS There were 51 405 individuals in the Michigan Genomics Initiative cohort including 10 378 (20.2%) cases of osteoporosis or osteopenia and 1404 (2.7%) cases of IBD. Patients with osteoporosis or osteopenia were more likely to be older (64 years of age vs 56 years of age; P < .001), female (67% vs 49%; P < .001), and have a lower body mass index (29 kg/m2 vs 30 kg/m2; P < .001). IBD patients with (odds ratio, 4.60; 95% confidence interval, 3.93-5.37) and without (odds ratio, 1.77; 95% confidence interval, 1.42-2.21) steroid use had a significantly higher risk of osteoporosis or osteopenia. Twenty-one IBD variants associated with reduced bone mineral density at P ≤ .05 and 3 IBD risk variants associated with reduced bone mineral density at P ≤ 5 × 10-8. Of the 3 genome-wide significant variants, 2 increased risk of IBD (rs12568930-T: MIR4418;ZBTB40; rs7236492-C: NFATC1). MR did not reveal a causal effect of genetically predicted IBD on bone density (MR Egger, P = .30; inverse variance weighted, P = .63). CONCLUSIONS Patients with IBD are at increased risk for low bone density, independent of steroid use. Variants in or near ZBTB40 and NFATC1 are associated with an increased risk of IBD and low bone density.
Collapse
Affiliation(s)
- Kelly C Cushing
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yanhua Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vincent Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Peter Higgins
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Bioinformatics Analysis of Immune Cell Infiltration and Diagnostic Biomarkers between Ankylosing Spondylitis and Inflammatory Bowel Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9065561. [PMID: 36643579 PMCID: PMC9836798 DOI: 10.1155/2023/9065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/09/2022] [Accepted: 11/26/2022] [Indexed: 01/07/2023]
Abstract
Background Ankylosing spondylitis (AS) and inflammatory bowel disease (IBD) are both autoimmune diseases, and they often occur together in clinical practice, but the pathogenesis is unclear. This study is aimed at identifying the hub genes and explore the related immune molecular mechanisms between AS and IBD by bioinformatics analysis. Methods From the public Gene Expression Omnibus (GEO) database, the AS and IBD datasets (GSE73754, GSE59071, GSE25101, and GSE36807) were obtained. The immune cell infiltration in the peripheral blood tissues of GSE73754 and GSE59071 was assessed using the CIBERSORT algorithm. Then, we used the Weighted Gene Coexpression Network Analysis (WGCNA) to identify the Differentially Expressed Genes (DEGs) related to AS and IBD. Then, the immune genes from the ImmPort database intersected with the DEGs to obtain hub genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the functional correlation of hub genes. Then, hub genes were verified in GSE25101 and GSE36807. The clusterProfiler software and Gene Set Enrichment Analysis (GSEA) were used to conduct functional enrichment and pathway enrichment studies. Finally, the diagnostic efficacy was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The analysis of immune characteristics showed that both AS and IBD were related to immunity, and neutrophils were positively correlated in both diseases. Nine coexpressed genes, including FCGRT, S100A11, IFNGR1, NFKBIZ, JAK2, LYN, PLAUR, ADM, and IL1RN, were linked to immune cells. The GO and KEGG analyses results showed that enrichment analysis was mainly related to cell transport and migration. Finally, the ROC curve was verified with the validation set, and it was found that PLAUR has clinical diagnostic significance and the most excellent specificity and sensitivity, respectively. Conclusions PLAUR (uPAR) is a promising biomarker and will be an underlying genetic biomarker for diagnosing AS comorbid IBD. Inflammation and immunological modulation mediated by neutrophil infiltration were important in the development of AS and IBD and may be diagnostic and therapeutic targets.
Collapse
|
9
|
Aczél T, Benczik B, Ágg B, Körtési T, Urbán P, Bauer W, Gyenesei A, Tuka B, Tajti J, Ferdinandy P, Vécsei L, Bölcskei K, Kun J, Helyes Z. Disease- and headache-specific microRNA signatures and their predicted mRNA targets in peripheral blood mononuclear cells in migraineurs: role of inflammatory signalling and oxidative stress. J Headache Pain 2022; 23:113. [PMID: 36050647 PMCID: PMC9438144 DOI: 10.1186/s10194-022-01478-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a primary headache with genetic susceptibility, but the pathophysiological mechanisms are poorly understood, and it remains an unmet medical need. Earlier we demonstrated significant differences in the transcriptome of migraineurs' PBMCs (peripheral blood mononuclear cells), suggesting the role of neuroinflammation and mitochondrial dysfunctions. Post-transcriptional gene expression is regulated by miRNA (microRNA), a group of short non-coding RNAs that are emerging biomarkers, drug targets, or drugs. MiRNAs are emerging biomarkers and therapeutics; however, little is known about the miRNA transcriptome in migraine, and a systematic comparative analysis has not been performed so far in migraine patients. METHODS We determined miRNA expression of migraineurs' PBMC during (ictal) and between (interictal) headaches compared to age- and sex-matched healthy volunteers. Small RNA sequencing was performed from the PBMC, and mRNA targets of miRNAs were predicted using a network theoretical approach by miRNAtarget.com™. Predicted miRNA targets were investigated by Gene Ontology enrichment analysis and validated by comparing network metrics to differentially expressed mRNA data. RESULTS In the interictal PBMC samples 31 miRNAs were differentially expressed (DE) in comparison to healthy controls, including hsa-miR-5189-3p, hsa-miR-96-5p, hsa-miR-3613-5p, hsa-miR-99a-3p, hsa-miR-542-3p. During headache attacks, the top DE miRNAs as compared to the self-control samples in the interictal phase were hsa-miR-3202, hsa-miR-7855-5p, hsa-miR-6770-3p, hsa-miR-1538, and hsa-miR-409-5p. MiRNA-mRNA target prediction and pathway analysis indicated several mRNAs related to immune and inflammatory responses (toll-like receptor and cytokine receptor signalling), neuroinflammation and oxidative stress, also confirmed by mRNA transcriptomics. CONCLUSIONS We provide here the first evidence for disease- and headache-specific miRNA signatures in the PBMC of migraineurs, which might help to identify novel targets for both prophylaxis and attack therapy.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Bettina Benczik
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás Körtési
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary.
- PharmInVivo Ltd., Pécs, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti út 12, 7624, Pécs, Hungary.
| |
Collapse
|
10
|
Wei H, Xie A, Li J, Fang C, Liu L, Xing J, Shi F, Mo F, Chen D, Xie H, Yang Q, Pan X, Tang X, Huang J. PD-1+ CD4 T cell immune response is mediated by HIF-1α/NFATc1 pathway after P. yoelii infection. Front Immunol 2022; 13:942862. [PMID: 36091043 PMCID: PMC9449323 DOI: 10.3389/fimmu.2022.942862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The morbidity and mortality of malaria are still high. Programmed cell death-1(PD-1) is an important co-inhibitory factor and CD8 T cells with PD-1 were reported to be exhausted cells. It remains unknown what the role of CD4 T cells expressing PD-1 is and what the upstream regulating molecules of PD-1 in CD4 T cells are. The C57BL/6 mice were injected with Plasmodium yoelii (P. yoelii) in this study. Expressions of PD-1, activation markers, and cytokines were tested. The differentially expressed genes between PD-1+/- CD4 T cells were detected by microarray sequencing. Western blot, chromatin immunoprecipitation (ChIP), siRNA, hypoxia inducible factor-1α (HIF-1α) inducer and inhibitor were used to explore PD-1’s upstream molecules, respectively. The proportions of PD-1+ CD4 T cells increased post P. yoelii infection. PD-1+ CD4 T cells expressed more activated surface markers and could produce more cytokines. Nuclear factor of activated T cells 1 (NFATc1) was found to be a key transcription factor to induce PD-1 expression after infection. Both the inducer and the inhibitor of HIF-1α could change the expressions of NFATc1 and PD-1 in vivo and in vitro, respectively. Taken together, P. yoelii infection induced NFATc1 expression by HIF-1α. The highly expressed NFATc1 entered the nucleus and initiated PD-1 expression. PD-1+ CD4 T cells appeared to be more activated and could secrete more cytokines to regulate the host’s immune responses against malaria.
Collapse
Affiliation(s)
- Haixia Wei
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaoping Tang, ; Jun Huang,
| | - Xiaoping Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaoping Tang, ; Jun Huang,
| | - Jun Huang
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaoping Tang, ; Jun Huang,
| |
Collapse
|
11
|
Wan D, Feng J, Wang P, Yang Z, Sun T. Hypoxia- and Inflammation-Related Transcription Factor SP3 May Be Involved in Platelet Activation and Inflammation in Intracranial Hemorrhage. Front Neurol 2022; 13:886329. [PMID: 35720085 PMCID: PMC9201407 DOI: 10.3389/fneur.2022.886329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
The purpose of this study was to identify the biomarkers implicated in the development of intracranial hemorrhage (ICH) and potential regulatory pathways. In the transcriptomic data for patients with ICH, we identified DEmiRNAs and DEmRNAs related to hypoxia, inflammation, and their transcription factors (TFs). An ICH-based miRNA-TF-mRNA regulatory network was thus constructed, and four biomarkers (TIMP1, PLAUR, DDIT3, and CD40) were screened for their association with inflammation or hypoxia by machine learning. Following this, SP3 was found to be a transcription factor involved in hypoxia and inflammation, which regulates TIMP1 and PLAUR. From the constructed miRNA-TF-mRNA regulatory network, we identified three axes, hsa-miR-940/RUNX1/TIMP1, hsa-miR-571/SP3/TIMP1, and hsa-miR-571/SP3/PLAUR, which may be involved in the development of ICH. Upregulated TIMP1 and PLAUR were validated in an independent clinical cohort 3 days after ICH onset. According to Gene Set Enrichment Analysis (GSEA), SP3 was discovered to be important in interleukin signaling and platelet activation for hemostasis. Transcription factor SP3 associated with hypoxia or inflammation plays an important role in development of ICH. This study provides potential targets for monitoring the severity of inflammation and hypoxia in patients with ICH.
Collapse
Affiliation(s)
- Ding Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Jin Feng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
| | - Zhenxing Yang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan, China
- *Correspondence: Tao Sun
| |
Collapse
|
12
|
Zhang X, Xiao H, Fu S, Yu J, Cheng Y, Jiang Y. Investigate the genetic mechanisms of diabetic kidney disease complicated with inflammatory bowel disease through data mining and bioinformatic analysis. Front Endocrinol (Lausanne) 2022; 13:1081747. [PMID: 36726458 PMCID: PMC9884696 DOI: 10.3389/fendo.2022.1081747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Patients with diabetic kidney disease (DKD) often have gastrointestinal dysfunction such as inflammatory bowel disease (IBD). This study aims to investigate the genetic mechanism leading to IBD in DKD patients through data mining and bioinformatics analysis. METHODS The disease-related genes of DKD and IBD were searched from the five databases of OMIM, GeneCards, PharmGkb, TTD, and DrugBank, and the intersection part of the two diseases were taken to obtain the risk genes of DKD complicated with IBD. A protein-protein interaction (PPI) network analysis was performed on risk genes, and three topological parameters of degree, betweenness, and closeness of nodes in the network were used to identify key risk genes. Finally, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the risk genes to explore the related mechanism of DKD merging IBD. RESULTS This study identified 495 risk genes for DKD complicated with IBD. After constructing a protein-protein interaction network and screening for three times, six key risk genes were obtained, including matrix metalloproteinase 2 (MMP2), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), interleukin (IL)-18, IL-13, and C-C motif chemokine ligand 5 (CCL5). Based on GO enrichment analysis, we found that DKD genes complicated with IBD were associated with 3,646 biological processes such as inflammatory response regulation, 121 cellular components such as cytoplasmic vesicles, and 276 molecular functions such as G-protein-coupled receptor binding. Based on KEGG enrichment analysis, we found that the risk genes of DKD combined with IBD were associated with 181 pathways, such as the PI3K-Akt signaling pathway, advanced glycation end product-receptor for AGE (AGE-RAGE) signaling pathway and hypoxia-inducible factor (HIF)-1 signaling pathway. CONCLUSION There is a genetic mechanism for the complication of IBD in patients with CKD. Oxidative stress, chronic inflammatory response, and immune dysfunction were possible mechanisms for DKD complicated with IBD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yanli Cheng, ; Yang Jiang,
| | - Yang Jiang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanli Cheng, ; Yang Jiang,
| |
Collapse
|