1
|
Azad H, Akbar MY, Sarfraz J, Haider W, Ghazanfar S. Simulation studies to identify high-affinity probiotic peptides for inhibiting PAK1 gastric cancer protein: A comparative approach. Comput Biol Chem 2025; 115:108345. [PMID: 39818002 DOI: 10.1016/j.compbiolchem.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/09/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
A major threat to world health is the high death rate from gastrointestinal (GI) cancer, especially in Asia, South America, and Europe. The new approaches are needed because of the complexity and heterogeneity of gastrointestinal (GI) cancer, which has made the development of effective treatments difficult. To investigate the potential of peptide-based therapies that target the P21 Activated Kinase 1 (PAK1) in GI cancer, we are using the DBsORF database to predict peptides from the genomes of two bacterial strains: Lactobacillus plantarum and Pediococcus pentosaceus. Energy minimization is then applied for stability after the three-dimensional (3D) structures of these peptides are modeled using the Swiss Model tool. ToxinPred is used for toxicity analysis to verify the safety profiles of the identified peptides. The three-dimensional structure of the target protein PAK1 is taken out of the Protein Data Bank (PDB) and ready for computer analyses. To identify the top-performing peptides for each strain that have good PAK1 binding properties, molecular docking analysis is performed using the ClusPro server. The peptide repertoires of L.plantarum and P. pentosaceus are distinct, and some candidates display low toxicity; for instance, VOIOYA_1513 from P. pentosaceus and BVNTGZ_2921 from L. plantarum demonstrate high binding energies and stable interactions with PAK1. Once the binding energies, hydrogen bonds, and non-bonded contacts have been evaluated, promising peptide candidates are selected. Understanding the dynamics of the peptide-PAK1 complexes is achieved through molecular dynamics simulations performed with the Groningen machine for molecular simulation (Gromacs). Trajectory analysis measures like Radius of Gyration (Rg), Root Mean Square Deviation (RMSD), and Root Mean Square Fluctuation (RMSF) provide insight into the stability and fluctuations of the structure during a 100 ns simulation. Molecular dynamics simulations validate the stability of these complexes, suggesting that, subject to further experimental validation, they could be promising therapeutic candidates. Future research projects and drug development initiatives will benefit from the detailed computational approach, which offers information about the design and evaluation of peptide-based treatments that target PAK1 in GI cancer.
Collapse
Affiliation(s)
- Humera Azad
- Department of Biosciences (Bioinformatics) Islamabad, Comsats University Islamabad, Pakistan.
| | - Muhammad Yasir Akbar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Pakistan.
| | | | - Waseem Haider
- Department of Biosciences (Bioinformatics) Islamabad, Comsats University Islamabad, Pakistan.
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Pakistan.
| |
Collapse
|
2
|
Lim CS, Gibbon AK, Tran Nguyen AT, Chieng GSW, Brown CM. RIBOSS detects novel translational events by combining long- and short-read transcriptome and translatome profiling. Brief Bioinform 2025; 26:bbaf164. [PMID: 40221960 PMCID: PMC11994033 DOI: 10.1093/bib/bbaf164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/15/2025] Open
Abstract
Ribosome profiling is a high-throughput sequencing technique that captures the positions of translating ribosomes on RNAs. Recent advancements in ribosome profiling include achieving highly phased ribosome footprints for plant translatomes and more recently for bacterial translatomes. This substantially increases the specificity of detecting open reading frames (ORFs) that can be translated, such as small ORFs located upstream and downstream of the annotated ORFs. However, most genomes (e.g. bacterial genomes) lack the annotations for the transcription start and termination sites. This hinders the systematic discovery of novel ORFs in the 'untranslated' regions in ribosome profiling data. Here, we develop a new computational pipeline called RIBOSS to discover noncanonical ORFs and assess their translational potential against annotated ORFs. The RIBOSS Python modules are versatile, and we use them to analyse both prokaryotic and eukaryotic data. We present a resulting list of noncanonical ORFs with high translational potential in Homo sapiens, Arabidopsis thaliana, and Salmonella enterica. We further illustrate RIBOSS utility when studying organisms with incomplete transcriptome annotations. We leverage long-read and short-read data for reference-guided transcriptome assembly and highly phased ribosome profiling data for detecting novel translational events in the assembled transcriptome for S. enterica. In sum, RIBOSS is the first integrated computational pipeline for noncanonical ORF detection and translational potential assessment that incorporates long- and short-read sequencing technologies to investigate translation. RIBOSS is freely available at https://github.com/lcscs12345/riboss.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Alexandra K Gibbon
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Anh Thu Tran Nguyen
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Gabrielle S W Chieng
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
- Genetics Otago, University of Otago, 710 Cumberland Street, Dunedin North, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Movahedi A, Hwarari D, Dzinyela R, Ni S, Yang L. A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses. Crit Rev Biotechnol 2025; 45:473-490. [PMID: 38797669 DOI: 10.1080/07388551.2024.2344584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.
Collapse
Affiliation(s)
- Ali Movahedi
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE, USA
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Raphael Dzinyela
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Siyi Ni
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Azam T, Dai X, Chen X, Ali I, Chen S, Noor F, Haider SZ. Comparative transcriptomic and physiological analysis of extremophilic and non-extremophilic fungi in bioremediation of cadmium (Cd) and strontium (Sr). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125678. [PMID: 39800155 DOI: 10.1016/j.envpol.2025.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Heavy metal and nuclide contamination pose increasing threats to the environment and public health. In this study, a comparative analysis was conducted on the bioremediation capabilities of the halophilic fungus Engyodontium album (E. album) and the non-halophilic fungus Trichoderma reesei (T. reesei) under cadmium (Cd) and strontium (Sr) stress. Biosorption tests, scanning electron microscopy (SEM), and transcriptomic analyses were performed to assess the fungi's physiological and molecular responses to 100 ppm of Cd and Sr. The results revealed that E. album exhibited superior biosorption capacity for both Cd and Sr, significantly outperforming T. reesei. Transcriptomic analysis identified the upregulation of metal-degrading enzymes and enhanced antioxidant defences in E. album, with increased activity in the MAPK signalling pathway. In contrast, T. reesei demonstrated lower tolerance and remediation efficiency, with significant gene expression changes under stress conditions, particularly in reactive oxygen species detoxification mechanisms. These findings suggest that extremophilic fungi like E. album hold significant promise for eco-friendly bioremediation applications due to their robust metabolic adaptations to heavy metal stress. This study is the first to compare extremophilic and non-extremophilic fungi in response to heavy metal contamination, providing valuable insights for future environmental remediation strategies.
Collapse
Affiliation(s)
- Toquier Azam
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xueqi Dai
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xiaoming Chen
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Imran Ali
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China; Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan; Institute of Biochemistry, University of Balochistan, Quetta, 87300, Pakistan.
| | - Sen Chen
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Syed Zeeshan Haider
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Cappato S, Divizia MT, Menta L, Rosti G, Puliti A, Martinheira Da Silva JS, Santamaria G, Di Duca M, Ronchetto P, Faravelli F, Zara F, Bocciardi R. LMX1B haploinsufficiency due to variants in the 5'UTR as a cause of Nail-Patella syndrome. NPJ Genom Med 2025; 10:10. [PMID: 39939609 PMCID: PMC11822002 DOI: 10.1038/s41525-024-00460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/20/2024] [Indexed: 02/14/2025] Open
Abstract
Nail-Patella syndrome (NPS) is a rare autosomal dominant condition due to haploinsufficiency of LMX1B, caused by loss-of-function variants affecting the coding sequence, or partial/whole deletions of the gene. In here, we describe two familial cases of NPS, carrying novel variants of the LMX1B 5'UTR region (-174C>T and -226G>A). To verify their pathogenic role, we carried out a functional characterization, both by reporter gene assays in heterologous systems and in patient's derived cells. We demonstrated that both variants impair LMX1B expression at post-transcriptional level. They introduce two upstream open reading frames (uORFs), out-of-frame with the main LMX1B coding sequence, generating transcripts detected by the non-sense mediated decay (NMD). We also demonstrated that the escape of the altered mRNA from NMD, if any, may lead to the synthesis of an aberrant LMX1B protein.
Collapse
Affiliation(s)
- Serena Cappato
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Teresa Divizia
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ludovica Menta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giulia Rosti
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Aldamaria Puliti
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Joana Soraia Martinheira Da Silva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Giuseppe Santamaria
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Di Duca
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Francesca Faravelli
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Renata Bocciardi
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
6
|
Balakrishnan A, Winiarek G, Hołówka O, Godlewski J, Bronisz A. Unlocking the secrets of the immunopeptidome: MHC molecules, ncRNA peptides, and vesicles in immune response. Front Immunol 2025; 16:1540431. [PMID: 39944685 PMCID: PMC11814183 DOI: 10.3389/fimmu.2025.1540431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
The immunopeptidome, a diverse set of peptides presented by Major Histocompatibility Complex (MHC) molecules, is a critical component of immune recognition and response. This review article delves into the mechanisms of peptide presentation by MHC molecules, particularly emphasizing the roles of ncRNA-derived peptides and extracellular vesicles (EVs) in shaping the immunopeptidome landscape. We explore established and emerging insights into MHC molecule interactions with peptides, including the dynamics of peptide loading, transport, and the influence of cellular and genetic variations. The article highlights novel research on non-coding RNA (ncRNA)-derived peptides, which challenge conventional views of antigen processing and presentation and the role of EVs in transporting these peptides, thereby modulating immune responses at remote body sites. This novel research not only challenges conventional views but also opens up new avenues for understanding immune responses. Furthermore, we discuss the implications of these mechanisms in developing therapeutic strategies, particularly for cancer immunotherapy. By conducting a comprehensive analysis of current literature and advanced methodologies in immunopeptidomics, this review aims to deepen the understanding of the complex interplay between MHC peptide presentation and the immune system, offering new perspectives on potential diagnostic and therapeutic applications. Additionally, the interactions between ncRNA-derived peptides and EVs provide a mechanism for the enhanced surface presentation of these peptides and highlight a novel pathway for their systemic distribution, potentially altering immune surveillance and therapeutic landscapes.
Collapse
Affiliation(s)
- Arpita Balakrishnan
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Translational Medicine Doctoral School, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Gabriela Winiarek
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Hołówka
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Godlewski
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Sinha T, Sadhukhan S, Panda AC. Computational Prediction of Gene Regulation by lncRNAs. Methods Mol Biol 2025; 2883:343-362. [PMID: 39702716 DOI: 10.1007/978-1-0716-4290-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
High-throughput sequencing technologies and innovative bioinformatics tools discovered that most of the genome is transcribed into RNA. However, only a fraction of the RNAs in cell translates into proteins, while the majority of them are categorized as noncoding RNAs (ncRNAs). The ncRNAs with more than 200 nt without protein-coding ability are termed long noncoding RNAs (lncRNAs). Hundreds of studies established that lncRNAs are a crucial RNA family regulating gene expression. Regulatory RNAs, including lncRNAs, modulate gene expression by interacting with RNA, DNA, and proteins. Several databases and computational tools have been developed to explore the functions of lncRNAs in cellular physiology. This chapter discusses the tools available for lncRNA functional analysis and provides a detailed workflow for the computational analysis of lncRNAs.
Collapse
Affiliation(s)
- Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Susovan Sadhukhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Naidu P, Holford M. Microscopic marvels: Decoding the role of micropeptides in innate immunity. Immunology 2024; 173:605-621. [PMID: 39188052 DOI: 10.1111/imm.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The innate immune response is under selection pressures from changing environments and pathogens. While sequence evolution can be studied by comparing rates of amino acid mutations within and between species, how a gene's birth and death contribute to the evolution of immunity is less known. Short open reading frames, once regarded as untranslated or transcriptional noise, can often produce micropeptides of <100 amino acids with a wide array of biological functions. Some micropeptide sequences are well conserved, whereas others have no evolutionary conservation, potentially representing new functional compounds that arise from species-specific adaptations. To date, few reports have described the discovery of novel micropeptides of the innate immune system. The diversity of immune-related micropeptides is a blind spot for gene and functional annotation. Immune-related micropeptides represent a potential reservoir of untapped compounds for understanding and treating disease. This review consolidates what is currently known about the evolution and function of innate immune-related micropeptides to facilitate their investigation.
Collapse
Affiliation(s)
- Praveena Naidu
- Graduate Center, Programs in Biology, Biochemistry, Chemistry, City University of New York, New York, New York, USA
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, Belfer Research Building, New York, New York, USA
| | - Mandë Holford
- Graduate Center, Programs in Biology, Biochemistry, Chemistry, City University of New York, New York, New York, USA
- Department of Chemistry and Biochemistry, City University of New York, Hunter College, Belfer Research Building, New York, New York, USA
- American Museum of Natural History, Invertebrate Zoology, Sackler Institute for Comparative Genomics, New York, New York, USA
- Weill Cornell Medicine, Department of Biochemistry, New York, New York, USA
| |
Collapse
|
9
|
Langschied F, Bordin N, Cosentino S, Fuentes-Palacios D, Glover N, Hiller M, Hu Y, Huerta-Cepas J, Coelho LP, Iwasaki W, Majidian S, Manzano-Morales S, Persson E, Richards TA, Gabaldón T, Sonnhammer E, Thomas PD, Dessimoz C, Ebersberger I. Quest for Orthologs in the Era of Biodiversity Genomics. Genome Biol Evol 2024; 16:evae224. [PMID: 39404012 PMCID: PMC11523110 DOI: 10.1093/gbe/evae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/01/2024] Open
Abstract
The era of biodiversity genomics is characterized by large-scale genome sequencing efforts that aim to represent each living taxon with an assembled genome. Generating knowledge from this wealth of data has not kept up with this pace. We here discuss major challenges to integrating these novel genomes into a comprehensive functional and evolutionary network spanning the tree of life. In summary, the expanding datasets create a need for scalable gene annotation methods. To trace gene function across species, new methods must seek to increase the resolution of ortholog analyses, e.g. by extending analyses to the protein domain level and by accounting for alternative splicing. Additionally, the scope of orthology prediction should be pushed beyond well-investigated proteomes. This demands the development of specialized methods for the identification of orthologs to short proteins and noncoding RNAs and for the functional characterization of novel gene families. Furthermore, protein structures predicted by machine learning are now readily available, but this new information is yet to be integrated with orthology-based analyses. Finally, an increasing focus should be placed on making orthology assignments adhere to the findable, accessible, interoperable, and reusable (FAIR) principles. This fosters green bioinformatics by avoiding redundant computations and helps integrating diverse scientific communities sharing the need for comparative genetics and genomics information. It should also help with communicating orthology-related concepts in a format that is accessible to the public, to counteract existing misinformation about evolution.
Collapse
Affiliation(s)
- Felix Langschied
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, WC1E 6BT, London, UK
| | - Salvatore Cosentino
- Department of Integrated Biosciences, The University of Tokyo, 277-0882 Tokyo, Japan
| | - Diego Fuentes-Palacios
- Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Natasha Glover
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Michael Hiller
- Department of Comparative Genomics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Madrid, Spain
| | - Luis Pedro Coelho
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Wataru Iwasaki
- Department of Integrated Biosciences, University of Tokyo, 277-0882 Tokyo, Japan
| | - Sina Majidian
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Saioa Manzano-Morales
- Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Emma Persson
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Solna, Sweden
| | | | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Solna, Sweden
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christophe Dessimoz
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
| |
Collapse
|
10
|
Nichols C, Do-Thi VA, Peltier DC. Noncanonical microprotein regulation of immunity. Mol Ther 2024; 32:2905-2929. [PMID: 38734902 PMCID: PMC11403233 DOI: 10.1016/j.ymthe.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The immune system is highly regulated but, when dysregulated, suboptimal protective or overly robust immune responses can lead to immune-mediated disorders. The genetic and molecular mechanisms of immune regulation are incompletely understood, impeding the development of more precise diagnostics and therapeutics for immune-mediated disorders. Recently, thousands of previously unrecognized noncanonical microprotein genes encoded by small open reading frames have been identified. Many of these microproteins perform critical functions, often in a cell- and context-specific manner. Several microproteins are now known to regulate immunity; however, the vast majority are uncharacterized. Therefore, illuminating what is often referred to as the "dark proteome," may present opportunities to tune immune responses more precisely. Here, we review noncanonical microprotein biology, highlight recently discovered examples regulating immunity, and discuss the potential and challenges of modulating dysregulated immune responses by targeting microproteins.
Collapse
Affiliation(s)
- Cydney Nichols
- Morris Green Scholars Program, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Van Anh Do-Thi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel C Peltier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Afreen U, Kumar M. 5-mC methylation study of sORFs in 3'UTR of transcription factor JUNGBRUNNEN 1-like during leaf rust pathogenesis in wheat. Mol Biol Rep 2024; 51:801. [PMID: 39001882 DOI: 10.1007/s11033-024-09718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND JUB1, a NAC domain containing hydrogen peroxide-induced transcription factor, plays a critical role in plant immunity. Little is known about how JUB1 responds to leaf rust disease in wheat. Recent discoveries in genomics have also unveiled a multitude of sORFs often assumed to be non-functional, to argue for the necessity of including them as potential regulatory players of translation. However, whether methylation on sORFs spanning the 3'UTR of regulatory genes like JUB1 modulate gene expression, remains unclear. METHODS AND RESULTS In this study, we identified the methylation states of two sORFs in 3'UTR of a homologous gene of JUB1 in wheat, TaJUB1-L, at cytosine residues in CpG, CHH and CHG sites at different time points of disease progression in two near-isogenic lines of wheat (HD2329), with and without Lr24 gene during leaf rust pathogenesis. Here, we report a significant demethylation of the CpG dinucleotides occurring in the sORFs of the 3'UTR in the resistant isolines after 24 h post-infection. Also, the up-regulated gene expression observed through RT-qPCR was directly proportional to the demethylation of the CpG sites in the sORFs. CONCLUSIONS Our findings indicate that TaJUB1-L might be a positive regulator in providing tolerance during leaf rust pathogenesis and cytosine methylation at 3'UTR might act as a switch for its expression control. These results enrich the potential benefit of conventional methylation assay techniques for unraveling the unexplored enigma in epigenetics during plant-pathogen interaction in a cost-effective and confidentially conclusive manner.
Collapse
Affiliation(s)
- Uzma Afreen
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
12
|
Rovelet-Lecrux A, Bonnevalle A, Quenez O, Delcroix W, Cassinari K, Richard AC, Boland A, Deleuze JF, Goizet C, Rucar A, Verny C, Nguyen K, Lecourtois M, Nicolas G. Upstream open reading frame-introducing variants in patients with primary familial brain calcification. Eur J Hum Genet 2024; 32:779-785. [PMID: 38433263 PMCID: PMC11219755 DOI: 10.1038/s41431-024-01580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
More than 50% of patients with primary familial brain calcification (PFBC), a rare neurological disorder, remain genetically unexplained. While some causative genes are yet to be identified, variants in non-coding regions of known genes may represent a source of missed diagnoses. We hypothesized that 5'-Untranslated Region (UTR) variants introducing an AUG codon may initiate mRNA translation and result in a loss of function in some of the PFBC genes. After reannotation of exome sequencing data of 113 unrelated PFBC probands, we identified two upstream AUG-introducing variants in the 5'UTR of PDGFB. One, NM_002608.4:c.-373C>G, segregated with PFBC in the family. It was predicted to create an upstream open reading frame (ORF). The other one, NM_002608.4:c.-318C>T, was found in a simplex case. It was predicted to result in an ORF overlapping the natural ORF with a frameshift. In a GFP reporter assay, both variants were associated with a dramatic decrease in GFP levels, and, after restoring the reading frame with the GFP sequence, the c.-318C>T variant was associated with a strong initiation of translation as measured by western blotting. Overall, we found upstream AUG-introducing variants in the 5'UTR of PDGFB in 2/113 (1.7%) undiagnosed PFBC cases. Such variants thus represent a source of putative pathogenic variants.
Collapse
Affiliation(s)
- Anne Rovelet-Lecrux
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France
| | - Antoine Bonnevalle
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Neurology, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France
| | - Olivier Quenez
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France
| | - Wandrille Delcroix
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France
| | - Kévin Cassinari
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France
| | - Anne-Claire Richard
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Cyril Goizet
- Department of Medical Genetics, National Reference Center for Rare Diseases 'Neurogenetic', Pellegrin Hospital, Bordeaux University Hospital, and University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
| | - Alice Rucar
- Department of Neurology, University-Hospital of Angers, 49933, Angers, France
- Unité MitoVasc, UMR CNRS 6015, INSERM U1083, 49933, Angers, France
| | - Christophe Verny
- Department of Neurology, University-Hospital of Angers, 49933, Angers, France
- Unité MitoVasc, UMR CNRS 6015, INSERM U1083, 49933, Angers, France
| | - Karine Nguyen
- AP-HM, Hôpital Timone, Département de Génétique Médicale, Marseille, France
| | - Magalie Lecourtois
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France
| | - Gaël Nicolas
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics, CNRMAJ and Reference Center for Neurogenetics Disorders, F-76000, Rouen, France.
| |
Collapse
|
13
|
Fesenko I, Sahakyan H, Shabalina SA, Koonin EV. The Cryptic Bacterial Microproteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580829. [PMID: 38903115 PMCID: PMC11188072 DOI: 10.1101/2024.02.17.580829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Microproteins encoded by small open reading frames (smORFs) comprise the "dark matter" of proteomes. Although functional microproteins were identified in diverse organisms from all three domains of life, bacterial smORFs remain poorly characterized. In this comprehensive study of intergenic smORFs (ismORFs, 15-70 codons) in 5,668 bacterial genomes of the family Enterobacteriaceae, we identified 67,297 clusters of ismORFs subject to purifying selection. The ismORFs mainly code for hydrophobic, potentially transmembrane, unstructured, or minimally structured microproteins. Using AlphaFold Multimer, we predicted interactions of some of the predicted microproteins encoded by transcribed ismORFs with proteins encoded by neighboring genes, revealing the potential of microproteins to regulate the activity of various proteins, particularly, under stress. We compiled a catalog of predicted microprotein families with different levels of evidence from synteny analysis, structure prediction, and transcription and translation data. This study offers a resource for investigation of biological functions of microproteins.
Collapse
Affiliation(s)
- Igor Fesenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
14
|
Valdivia-Francia F, Sendoel A. No country for old methods: New tools for studying microproteins. iScience 2024; 27:108972. [PMID: 38333695 PMCID: PMC10850755 DOI: 10.1016/j.isci.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Microproteins encoded by small open reading frames (sORFs) have emerged as a fascinating frontier in genomics. Traditionally overlooked due to their small size, recent technological advancements such as ribosome profiling, mass spectrometry-based strategies and advanced computational approaches have led to the annotation of more than 7000 sORFs in the human genome. Despite the vast progress, only a tiny portion of these microproteins have been characterized and an important challenge in the field lies in identifying functionally relevant microproteins and understanding their role in different cellular contexts. In this review, we explore the recent advancements in sORF research, focusing on the new methodologies and computational approaches that have facilitated their identification and functional characterization. Leveraging these new tools hold great promise for dissecting the diverse cellular roles of microproteins and will ultimately pave the way for understanding their role in the pathogenesis of diseases and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Fabiola Valdivia-Francia
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Schlieren-Zurich, Switzerland
| | - Ataman Sendoel
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
| |
Collapse
|
15
|
Nasr SM, Samir S, Okasha H. Interdisciplinary gene manipulation, molecular cloning, and recombinant expression of modified human growth hormone isoform-1 in E. coli system. Int J Biol Macromol 2024; 257:128637. [PMID: 38061513 DOI: 10.1016/j.ijbiomac.2023.128637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Growth hormone (GH) is a hormone that promotes growth, cell reproduction, and cell restoration in humans and animals. OBJECTIVES Production of recombinant human growth hormone (rhGH) in Escherichia coli (E. coli) and assessment of its characteristics and proliferation stimulatory activity. METHODS The hGH gene was cloned into a pET 3a expression vector and transformed into a competent E. coli cell. The refolded hGH was purified, Western blot and batch fermentation were performed. Cell cytotoxicity was tested on Vero cells, and MALDI-TOF and Nano-LC-ESI MS/MS were used for protein and target peptide analysis. RESULTS Induced rhGH was purified with a concentration of 511.9 mg/ml. Western blot confirmed the molecular identity of rhGH, showing a single 22 kDa band. The bacterial growth at OD600 after 24 h in batch fermentation was 9.78 ± 0.26, and wet cell weight (WCWg/L) was 15.2 ± 0.32. Purified rhGH activity on Vero cells was 0.535 IU/mg. LC-MS/MS analysis revealed a score of 70.51 % and coverage of 60.37 %. CONCLUSION Biologically active native rhGH protein was successfully expressed in the Prokaryotic system. Our goal is to increase its production on a pilot level in the native form at a high activity effect identical to isoform 1.
Collapse
Affiliation(s)
- Sami Mohamed Nasr
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
| | - Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| |
Collapse
|
16
|
Lindner G, Takenaka K, Santucci K, Gao Y, Janitz M. Protein-coding circular RNAs - mechanism, detection, and their role in cancer and neurodegenerative diseases. Biochem Biophys Res Commun 2023; 678:68-77. [PMID: 37619313 DOI: 10.1016/j.bbrc.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Circular RNAs (circRNAs) are a unique class of non-coding RNAs and were originally thought to have no protein-coding potential due to their lack of a 5' cap and 3' poly(A) tail. However, recent studies have challenged this notion and revealed that some circRNAs have protein-coding potential. They have emerged as a key area of interest in cancer and neurodegeneration research as recent studies have identified several circRNAs that can produce functional proteins with important roles in cancer progression. The protein-coding potential of circRNAs is determined by the presence of an open reading frame (ORF) within the circular structure that can encode a protein. In some cases, the ORF can be translated into a functional protein despite the lack of traditional mRNA features. While the protein-coding potential of most circRNAs remains unclear, several studies have identified specific circRNAs that can produce functional proteins. Understanding the protein-coding potential of circRNAs is important for unravelling their biological functions and potential roles in disease. Our review provides comprehensive coverage of recent advances in the field of circRNA protein-coding capacity and its impact on cancer and neurodegenerative diseases pathogenesis and progression.
Collapse
Affiliation(s)
- Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kristina Santucci
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Nieves-Rodriguez S, Barthélémy F, Woods JD, Douine ED, Wang RT, Scripture-Adams DD, Chesmore KN, Galasso F, Miceli MC, Nelson SF. Transcriptomic analysis of paired healthy human skeletal muscles to identify modulators of disease severity in DMD. Front Genet 2023; 14:1216066. [PMID: 37576554 PMCID: PMC10415210 DOI: 10.3389/fgene.2023.1216066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Muscle damage and fibro-fatty replacement of skeletal muscles is a main pathologic feature of Duchenne muscular dystrophy (DMD) with more proximal muscles affected earlier and more distal affected later in the disease course, suggesting that different skeletal muscle groups possess distinctive characteristics that influence their susceptibility to disease. To explore transcriptomic factors driving differential gene expression and modulating DMD skeletal muscle severity, we characterized the transcriptome of vastus lateralis (VL), a more proximal and susceptible muscle, relative to tibialis anterior (TA), a more distal and protected muscle, in 15 healthy individuals using bulk RNA sequencing to identify gene expression differences that may mediate their relative susceptibility to damage with loss of dystrophin. Matching single nuclei RNA sequencing data was generated for 3 of the healthy individuals, to infer cell composition in the bulk RNA sequencing dataset and to improve mapping of differentially expressed genes to their cell source of expression. A total of 3,410 differentially expressed genes were identified and mapped to cell type using single nuclei RNA sequencing of muscle, including long non-coding RNAs and protein coding genes. There was an enrichment of genes involved in calcium release from the sarcoplasmic reticulum, particularly in the myofibers and these myofiber genes were higher in the VL. There was an enrichment of genes in "Collagen-Containing Extracellular Matrix" expressed by fibroblasts, endothelial, smooth muscle and pericytes, with most genes higher in the TA, as well as genes in "Regulation Of Apoptotic Process" expressed across all cell types. Previously reported genetic modifiers were also enriched within the differentially expressed genes. We also identify 6 genes with differential isoform usage between the VL and TA. Lastly, we integrate our findings with DMD RNA sequencing data from the TA, and identify "Collagen-Containing Extracellular Matrix" and "Negative Regulation Of Apoptotic Process" as differentially expressed between DMD compared to healthy. Collectively, these findings propose novel candidate mechanisms that may mediate differential muscle susceptibility in muscular dystrophies and provide new insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Shirley Nieves-Rodriguez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremy D. Woods
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emilie D. Douine
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Richard T. Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Deirdre D. Scripture-Adams
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin N. Chesmore
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Francesca Galasso
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - M. Carrie Miceli
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Sruthi KB, Menon A, P A, Vasudevan Soniya E. Pervasive translation of small open reading frames in plant long non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2022; 13:975938. [PMID: 36352887 PMCID: PMC9638090 DOI: 10.3389/fpls.2022.975938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are primarily recognized as non-coding transcripts longer than 200 nucleotides with low coding potential and are present in both eukaryotes and prokaryotes. Recent findings reveal that lncRNAs can code for micropeptides in various species. Micropeptides are generated from small open reading frames (smORFs) and have been discovered frequently in short mRNAs and non-coding RNAs, such as lncRNAs, circular RNAs, and pri-miRNAs. The most accepted definition of a smORF is an ORF containing fewer than 100 codons, and ribosome profiling and mass spectrometry are the most prevalent experimental techniques used to identify them. Although the majority of micropeptides perform critical roles throughout plant developmental processes and stress conditions, only a handful of their functions have been verified to date. Even though more research is being directed toward identifying micropeptides, there is still a dearth of information regarding these peptides in plants. This review outlines the lncRNA-encoded peptides, the evolutionary roles of such peptides in plants, and the techniques used to identify them. It also describes the functions of the pri-miRNA and circRNA-encoded peptides that have been identified in plants.
Collapse
|
19
|
Liu C, Ma K, Zhang Y, He X, Song L, Chi M, Han Z, Li G, Zhang Q, Liu C. Kidney diseases and long non-coding RNAs in the limelight. Front Physiol 2022; 13:932693. [PMID: 36299256 PMCID: PMC9589442 DOI: 10.3389/fphys.2022.932693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.
Collapse
Affiliation(s)
- Chenxin Liu
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yunchao Zhang
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Linjiang Song
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| |
Collapse
|
20
|
Soukarieh O, Meguerditchian C, Proust C, Aïssi D, Eyries M, Goyenvalle A, Trégouët DA. Common and Rare 5′UTR Variants Altering Upstream Open Reading Frames in Cardiovascular Genomics. Front Cardiovasc Med 2022; 9:841032. [PMID: 35387445 PMCID: PMC8977850 DOI: 10.3389/fcvm.2022.841032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing (HTS) technologies are revolutionizing the research and molecular diagnosis landscape by allowing the exploration of millions of nucleotide sequences at an unprecedented scale. These technologies are of particular interest in the identification of genetic variations contributing to the risk of rare (Mendelian) and common (multifactorial) human diseases. So far, they have led to numerous successes in identifying rare disease-causing mutations in coding regions, but few in non-coding regions that include introns, untranslated (UTR), and intergenic regions. One class of neglected non-coding variations is that of 5′UTR variants that alter upstream open reading frames (upORFs) of the coding sequence (CDS) of a natural protein coding transcript. Following a brief summary of the molecular bases of the origin and functions of upORFs, we will first review known 5′UTR variations altering upORFs and causing rare cardiovascular disorders (CVDs). We will then investigate whether upORF-affecting single nucleotide polymorphisms could be good candidates for explaining association signals detected in the context of genome-wide association studies for common complex CVDs.
Collapse
Affiliation(s)
- Omar Soukarieh
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
- *Correspondence: Omar Soukarieh,
| | - Caroline Meguerditchian
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Carole Proust
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Dylan Aïssi
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Mélanie Eyries
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | | | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| |
Collapse
|