1
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Rai AK, Muthukumaran NS, Nisini N, Lee T, Kyriazis ID, de Lucia C, Piedepalumbo M, Roy R, Uchida S, Drosatos K, Bisserier M, Katare R, Goukassian D, Kishore R, Garikipati VNS. Transcriptome wide changes in long noncoding RNAs in diabetic ischemic heart disease. Cardiovasc Diabetol 2024; 23:365. [PMID: 39420368 PMCID: PMC11488282 DOI: 10.1186/s12933-024-02441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
More than 10% of adults in the United States have type 2 diabetes mellitus (DM) with a 2-4 times higher prevalence of ischemic heart disease than the non-diabetics. Despite extensive research approaches to limit this life-threatening condition have proven unsuccessful, highlighting the need for understanding underlying molecular mechanisms. Long noncoding RNAs (lncRNAs), which regulate gene expression by acting as signals, decoys, guides, or scaffolds have been implicated in diverse cardiovascular conditions. However, their role in ischemic heart disease in DM remains poorly understood. We provide new insights into the lncRNA expression profile after ischemic heart disease in DM mice. We performed unbiased RNA sequencing of well-characterized type 2 DM model db/db mice or its control db/+ subjected to sham or MI surgery. Computational analysis of the RNA sequencing of these LV tissues identified several differentially expressed lncRNAs between (db/db sham vs. db/db MI) including Gm19522 and Gm8075. lncRNA Gm-19522 may regulate DNA replication via DNA protein kinases, while lncRNA Gm-8075 is associated with cancer gene dysregulation and PI3K/Akt pathways. Thus, the downregulation of lncRNAs Gm19522 and Gm8075 post-MI may serve as potential biomarkers or novel therapeutic targets to improve cardiac repair/recovery in diabetic ischemic heart disease.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Natarajaseenivasan Suriya Muthukumaran
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Noemi Nisini
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Tiffany Lee
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Ioannis D Kyriazis
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Laboratory of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Claudio de Lucia
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority), Napoli 1 Centro, Naples, Italy
- ASL (Azienda Sanitaria Locale-Local Health Authority), Salerno, D.S. 60, Nocera Inferiore, SA, Italy
| | - Michela Piedepalumbo
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- ASL (Azienda Sanitaria Locale-Local Health Authority, Napoli 3 Sud, Naples, Italy
| | - Rajika Roy
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Frederikskaj 10B, 2. (Building C), Copenhagen SV, 2450, Denmark
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Department of Pharmacology and Systems Physiology, Cardiovascular Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raj Kishore
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
3
|
Overbey EG, Ryon K, Kim J, Tierney BT, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Garcia Medina JS, Kleinman AS, Wain Hirschberg J, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of biospecimens from the inspiration4 mission establishes the standards for the space omics and medical atlas (SOMA). Nat Commun 2024; 15:4964. [PMID: 38862509 PMCID: PMC11166662 DOI: 10.1038/s41467-024-48806-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, 78701, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - J Sebastian Garcia Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - S Anand Narayanan
- Florida State University, College of Education, Health, and Human Sciences, Department of Health, Nutrition, and Food Sciences, Tallahassee, FL, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- BioAstra, Inc, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
4
|
Liu M, Lan Y, Qin Y, Gao Y, Deng Y, Li N, Zhang C, Ma H. Interaction between astrocytes and neurons in simulated space radiation-induced CNS injury. Int J Radiat Biol 2023; 99:1830-1840. [PMID: 37436484 DOI: 10.1080/09553002.2023.2232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/26/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Astronauts exhibit neurological dysfunction during long-duration spaceflight, and the specific mechanisms may be closely related to the cumulative effects of these neurological injuries in the space radiation environment. Here, we investigated the interaction between astrocytes and neuronal cells exposed to simulated space radiation. MATERIALS AND METHODS we selected human astrocytes (U87 MG) and neuronal cells (SH-SY5Y) to establish an experimental model to explore the interaction between astrocytes and neuronal cells in the CNS under simulated space radiation environment and the role of exosomes in the interactions. RESULTS We found that γ-ray caused oxidative and inflammatory damage in human U87 MG and SH-SY5Y. The results of the conditioned medium transfer experiments showed that astrocytes exhibited a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory injury of CNS. We demonstrated that the number and size distribution of exosomes derived from U87 MG and SH-SY5Y cells were changed in response to H2O2, TNF-α or γ-ray treatment. Furthermore, we found that exosome derived from treated nerve cells influenced the cell viability and gene expression of untreated nerve cells, and the effect of exosomes was partly consistent with that of the conditioned medium. CONCLUSION Our findings demonstrated that astrocytes showed a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory damage of CNS induced by simulated space radiation. Exosomes played an essential role in the interaction between astrocytes and neuronal cells exposed to simulated space radiation.
Collapse
Affiliation(s)
- Mengjin Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Lan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuhan Qin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanan Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Chen Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Overbey EG, Ryon K, Kim J, Tierney B, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Medina JSG, Kleinman A, Hirschberg JW, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of Biospecimens from the Inspiration4 Mission Establishes the Standards for the Space Omics and Medical Atlas (SOMA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539108. [PMID: 37205403 PMCID: PMC10187258 DOI: 10.1101/2023.05.02.539108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Caleb M. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E. Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
6
|
Rai AK, Rajan KS, Bisserier M, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Mills PJ, Arakelyan A, Uchida S, Hadri L, Goukassian DA, Garikipati VNS. Spaceflight-Associated Changes of snoRNAs in Peripheral Blood Mononuclear Cells and Plasma Exosomes-A Pilot Study. Front Cardiovasc Med 2022; 9:886689. [PMID: 35811715 PMCID: PMC9267956 DOI: 10.3389/fcvm.2022.886689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
During spaceflight, astronauts are exposed to various physiological and psychological stressors that have been associated with adverse health effects. Therefore, there is an unmet need to develop novel diagnostic tools to predict early alterations in astronauts' health. Small nucleolar RNA (snoRNA) is a type of short non-coding RNA (60-300 nucleotides) known to guide 2'-O-methylation (Nm) or pseudouridine (ψ) of ribosomal RNA (rRNA), small nuclear RNA (snRNA), or messenger RNA (mRNA). Emerging evidence suggests that dysregulated snoRNAs may be key players in regulating fundamental cellular mechanisms and in the pathogenesis of cancer, heart, and neurological disease. Therefore, we sought to determine whether the spaceflight-induced snoRNA changes in astronaut's peripheral blood (PB) plasma extracellular vesicles (PB-EV) and peripheral blood mononuclear cells (PBMCs). Using unbiased small RNA sequencing (sRNAseq), we evaluated changes in PB-EV snoRNA content isolated from astronauts (n = 5/group) who underwent median 12-day long Shuttle missions between 1998 and 2001. Using stringent cutoff (fold change > 2 or log2-fold change >1, FDR < 0.05), we detected 21 down-and 9-up-regulated snoRNAs in PB-EVs 3 days after return (R + 3) compared to 10 days before launch (L-10). qPCR validation revealed that SNORA74A was significantly down-regulated at R + 3 compared to L-10. We next determined snoRNA expression levels in astronauts' PBMCs at R + 3 and L-10 (n = 6/group). qPCR analysis further confirmed a significant increase in SNORA19 and SNORA47 in astronauts' PBMCs at R + 3 compared to L-10. Notably, many downregulated snoRNA-guided rRNA modifications, including four Nms and five ψs. Our findings revealed that spaceflight induced changes in PB-EV and PBMCs snoRNA expression, thus suggesting snoRNAs may serve as potential novel biomarkers for monitoring astronauts' health.
Collapse
Affiliation(s)
- Amit Kumar Rai
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela C. Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, La Jolla, CA, United States
| | - Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
7
|
Bisserier M, Brojakowska A, Saffran N, Rai AK, Lee B, Coleman M, Sebastian A, Evans A, Mills PJ, Addya S, Arakelyan A, Garikipati VNS, Hadri L, Goukassian DA. Astronauts Plasma-Derived Exosomes Induced Aberrant EZH2-Mediated H3K27me3 Epigenetic Regulation of the Vitamin D Receptor. Front Cardiovasc Med 2022; 9:855181. [PMID: 35783863 PMCID: PMC9243458 DOI: 10.3389/fcvm.2022.855181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
There are unique stressors in the spaceflight environment. Exposure to such stressors may be associated with adverse effects on astronauts' health, including increased cancer and cardiovascular disease risks. Small extracellular vesicles (sEVs, i.e., exosomes) play a vital role in intercellular communication and regulate various biological processes contributing to their role in disease pathogenesis. To assess whether spaceflight alters sEVs transcriptome profile, sEVs were isolated from the blood plasma of 3 astronauts at two different time points: 10 days before launch (L-10) and 3 days after return (R+3) from the Shuttle mission. AC16 cells (human cardiomyocyte cell line) were treated with L-10 and R+3 astronauts-derived exosomes for 24 h. Total RNA was isolated and analyzed for gene expression profiling using Affymetrix microarrays. Enrichment analysis was performed using Enrichr. Transcription factor (TF) enrichment analysis using the ENCODE/ChEA Consensus TF database identified gene sets related to the polycomb repressive complex 2 (PRC2) and Vitamin D receptor (VDR) in AC16 cells treated with R+3 compared to cells treated with L-10 astronauts-derived exosomes. Further analysis of the histone modifications using datasets from the Roadmap Epigenomics Project confirmed enrichment in gene sets related to the H3K27me3 repressive mark. Interestingly, analysis of previously published H3K27me3-chromatin immunoprecipitation sequencing (ChIP-Seq) ENCODE datasets showed enrichment of H3K27me3 in the VDR promoter. Collectively, our results suggest that astronaut-derived sEVs may epigenetically repress the expression of the VDR in human adult cardiomyocytes by promoting the activation of the PRC2 complex and H3K27me3 levels.
Collapse
Affiliation(s)
- Malik Bisserier
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Agnieszka Brojakowska
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Nathaniel Saffran
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Amit Kumar Rai
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brooke Lee
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Matthew Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Angela Evans
- Lawrence Livermore National Laboratory, Livermore, CA, United States
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Paul J. Mills
- Center of Excellence for Research and Training in Integrative Health, University of California, San Diego, La Jolla, CA, United States
| | - Sankar Addya
- Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
- Department of Bioengineering, Bioinformatics, and Molecular Biology, Russian-Armenian University, Yerevan, Armenia
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Lahouaria Hadri
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - David A. Goukassian
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| |
Collapse
|