1
|
Qiu Z, Ren S, Zhao J, Cui L, Li H, Jiang B, Zhang M, Shu L, Li T. Comparative analysis of the nutritional and biological properties between the pileus and stipe of Morchella sextelata. Front Nutr 2024; 10:1326461. [PMID: 38249598 PMCID: PMC10796790 DOI: 10.3389/fnut.2023.1326461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Morchella sextelata is a highly prized edible mushroom and is widely consumed for its distinctive taste and texture. The stipe of M. sextelata is significantly lower in priced compared to the pileus. The aim of this study was to conduct a comprehensive comparative analysis of the nutritional and biological properties between the pileus and stipe of M. sextelata. The results revealed that the stipe exhibited comparable levels of various nutrients and bioactive compounds to those found in the pileus. The stipe showed significantly higher levels of crude dietary fiber, various mineral elements, vitamins, amino acids, 5'-nucleotides, fatty acids, and specific sugars. Additionally, it also demonstrated significant abundance in bioactive compounds such as total flavonoids and ergothioneine. Overall, our study provides valuable insights into unlocking further knowledge about M. sextelata's nutritional composition while highlighting its potential health benefits associated with different parts of this highly esteemed edible mushroom.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuhua Ren
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lingxiu Cui
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Hongpeng Li
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Bei Jiang
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Miao Zhang
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lili Shu
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Tianlai Li
- Modern Protected Horticulture Engineering and Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Wu F, Li Z, Chen X, Si X, Lin S. Untargeted metabolomics reveals sour jujube kernel benefiting the nutritional value and flavor of Morchella esculenta. Open Life Sci 2023; 18:20220708. [PMID: 37671097 PMCID: PMC10476485 DOI: 10.1515/biol-2022-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Nucleosides, organic acids, and amino acids separated from Morchella esculenta are well known for their nutritional value and flavor. However, how to increase their content in a better way has been a challenge. In this study, the effect of adding jujube kernel on the active components of M. esculenta was investigated by untargeted metabolomics using UPLC-MS/MS. A total of 1,243 metabolites were identified, of which 262 metabolites (21.078%) were organic acids and derivatives, 245 metabolites (19.71%) were lipids and lipid-like molecules, and 26 metabolites (2.092%) were nucleosides, nucleotides, and analogues. Subsequently, differential metabolites between groups were screened by the orthogonal partial least squares-discriminant analysis model, which showed that 256 metabolites were identified as significantly different for the positive ion model and 149 for the negative ion model. Moreover, significant differential metabolites (VIP > 1, P < 0.05) in annotation of kyoto encyclopedia of genes and genomes pathway were investigated, which showed that ABC transporters were the most commonly observed transporters, followed by pyrimidine metabolism and purine metabolism. The results indicated that the main components of jujube kernel might be conducive to the accumulation of nucleoside organic acids and amino acid metabolites in M. esculenta. These results provide important information for the understanding of more suitable way for cultivation of M. esculenta.
Collapse
Affiliation(s)
- Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhiyuan Li
- Department of Acupuncture, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xinlei Si
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Liu W, He P, Shi X, Zhang Y, Perez-Moreno J, Yu F. Large-Scale Field Cultivation of Morchella and Relevance of Basic Knowledge for Its Steady Production. J Fungi (Basel) 2023; 9:855. [PMID: 37623626 PMCID: PMC10455658 DOI: 10.3390/jof9080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Morels are one of the most highly prized edible and medicinal mushrooms worldwide. Therefore, historically, there has been a large international interest in their cultivation. Numerous ecological, physiological, genetic, taxonomic, and mycochemical studies have been previously developed. At the beginning of this century, China finally achieved artificial cultivation and started a high-scale commercial development in 2012. Due to its international interest, its cultivation scale and area expanded rapidly in this country. However, along with the massive industrial scale, a number of challenges, including the maintenance of steady economic profits, arise. In order to contribute to the solution of these challenges, formal research studying selection, species recognition, strain aging, mating type structure, life cycle, nutrient metabolism, growth and development, and multi-omics has recently been boosted. This paper focuses on discussing current morel cultivation technologies, the industrial status of cultivation in China, and the relevance of basic biological research, including, e.g., the study of strain characteristics, species breeding, mating type structure, and microbial interactions. The main challenges related to the morel cultivation industry on a large scale are also analyzed. It is expected that this review will promote a steady global development of the morel industry based on permanent and robust basic scientific knowledge.
Collapse
Affiliation(s)
- Wei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| | - Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| | - Ya Zhang
- Sichuan Junyinong Agricultural Technology Co., Ltd., Chengdu 610023, China;
| | - Jesus Perez-Moreno
- Edafologia, Campus Montecillo, Colegio de Postgraduados, Texcoco 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.)
| |
Collapse
|
4
|
Fan T, Ren R, Tang S, Zhou Y, Cai M, Zhao W, He Y, Xu J. Transcriptomics combined with metabolomics unveiled the key genes and metabolites of mycelium growth in Morchella importuna. Front Microbiol 2023; 14:1079353. [PMID: 36819010 PMCID: PMC9929000 DOI: 10.3389/fmicb.2023.1079353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Morels (Morchella) are one of the most popular edible fungi in the world, especially known for their rich nutrition and delicious taste. Earlier research indicates that the production of fruiting bodies can be affected by the growth of mycelium. To investigate the molecular mechanisms underlying mycelium growth in Morchella importuna, we performed transcriptome analysis and metabolomics analysis of three growth stages of the hypha of M. importuna. As a result, 24 differentially expressed genes, such as transketolase (tktA), glucose-6-phosphate dehydrogenase (G6PDH), fructose-diphosphate aldolase (Fba), and ribose-5-phosphate isomerase (rpiA), as well as 15 differentially accumulated metabolites, including succinate and oxaloacetate, were identified and considered as the key genes and metabolites to mycelium growth in M. importuna. In addition, guanosine 3',5'-cyclic monophosphate (cGMP), guanosine-5'-monophosphate (GMP), and several small peptides were found to differentially accumulate in different growth stages. Furthermore, five pathways, namely, starch and sucrose metabolism, pentose and glucuronate interconversions, fructose and mannose metabolism, tyrosine metabolism, and purine nucleotides, enriched by most DEGs, existed in the three compared groups and were also recognized as important pathways for the development of mycelium in morels. The comprehensive transcriptomics and metabolomics data generated in our study provided valuable information for understanding the mycelium growth of M. importuna, and these data also unveiled the key genes, metabolites, and pathways involved in mycelium growth. This research provides a great theoretical basis for the stable production and breeding of morels.
Collapse
Affiliation(s)
- Tingting Fan
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Rui Ren
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China
| | - Shaojun Tang
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China
| | - Yiyun Zhou
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Meng Cai
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Wenwen Zhao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Yuelin He
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China
| | - Jun Xu
- The Center of Culture Preservation, Hunan Institute of Microbiology, Changsha, China,*Correspondence: Jun Xu ✉
| |
Collapse
|
5
|
Meng Q, Xie Z, Xu H, Guo J, Tang Y, Ma T, Peng Q, Wang B, Mao Y, Yan S, Yang J, Dong D, Duan Y, Zhang F, Gao T. Out of the Qinghai-Tibetan plateau: Origin, evolution and historical biogeography of Morchella (both Elata and Esculenta clades). Front Microbiol 2022; 13:1078663. [PMID: 36643413 PMCID: PMC9832445 DOI: 10.3389/fmicb.2022.1078663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Morchella has become a research hotspot because of its wide distribution, delicious taste, and phenotypic plasticity. The Qinghai-Tibet Plateau subkingdoms (QTPs) are known as the cradle of Ice age biodiversity. However, the diversity of Morchella in the QTPs has been poorly investigated, especially in phylogenetic diversity, origin, and biogeography. Methods The genealogical concordance phylogenetic species recognition (GCPSR, based on Bayesian evolutionary analysis using sequences from the internal transcribed spacer (ITS), nuclear large subunit rDNA (nrLSU), translation elongation factor 1-α (EF1-α), and the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2)), differentiation time estimation, and ancestral region reconstruction were used to infer Morchella's phylogenetic relationships and historical biogeography in the QTPs. Results Firstly, a total of 18 Morchella phylogenetic species are recognized in the QTPs, including 10 Elata clades and 8 Esculenta clades of 216 individuals Secondly, the divergences of the 18 phylogenetic species were 50.24-4.20 Mya (Eocene-Pliocene), which was closely related to the geological activities in the QTPs. Furthermore, the ancestor of Morchella probably originated in the Northern regions (Qilian Shan, Elata cade) and southwestern regions (Shangri-La, Esculenta clade) of QTPs and might have migrated from North America (Rufobrunnea clade) via Beringian Land Bridge (BLB) and Long-Distance Dispersal (LDD) expansions during the Late Cretaceous. Moreover, as the cradle of species origin and diversity, the fungi species in the QTPs have spread out and diffused to Eurasia and South Africa starting in the Paleogene Period. Conclusion This is the first report that Esculenta and Elata clade of Morchella originated from the QTPs because of orogenic, and rapid differentiation of fungi is strongly linked to geological uplift movement and refuge in marginal areas of the QTPs. Our findings contribute to increasing the diversity of Morchella and offer more evidence for the origin theory of the QTPs.
Collapse
Affiliation(s)
- Qing Meng
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai, China
| | - Zhanling Xie
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai, China
| | - Hongyan Xu
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Jing Guo
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai, China
| | - Yongpeng Tang
- State-owned Forest Farm of Tianjun County, Delingha, Qinghai, China
| | - Ting Ma
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
| | - Qingqing Peng
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
| | - Bao Wang
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai, China
| | - Yujing Mao
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai, China
| | - Shangjin Yan
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiabao Yang
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai, China
| | - Deyu Dong
- College of Ecological and Environment Engineering, Qinghai University, Xining, Qinghai, China
- State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai University, Xining, Qinghai, China
| | - Yingzhu Duan
- State-owned Forest Farm of Tianjun County, Delingha, Qinghai, China
| | - Fan Zhang
- Forestry and Grassland Station of Tianjun County, Delingha, Qinghai, China
| | - Taizhen Gao
- State-owned Forest Farm of Tianjun County, Delingha, Qinghai, China
| |
Collapse
|
6
|
Shi X, Liu D, He X, Liu W, Yu F. Epidemic Identification of Fungal Diseases in Morchella Cultivation across China. J Fungi (Basel) 2022; 8:1107. [PMID: 36294672 PMCID: PMC9604896 DOI: 10.3390/jof8101107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 08/25/2023] Open
Abstract
True morels (Morchella, Pezizales) are world-renowned edible mushrooms (ascocarps) that are widely demanded in international markets. Morchella has been successfully artificially cultivated since 2012 in China and is rapidly becoming a new edible mushroom industry occupying up to 16,466 hectares in the 2021-2022 season. However, nearly 25% of the total cultivation area has annually suffered from fungal diseases. While a variety of morel pathogenic fungi have been reported their epidemic characteristics are unknown, particularly in regional or national scales. In this paper, ITS amplicon sequencing and microscopic examination were concurrently performed on the morel ascocarp lesions from 32 sites in 18 provinces across China. Results showed that Diploöspora longispora (75.48%), Clonostachys solani (5.04%), Mortierella gamsii (0.83%), Mortierella amoeboidea (0.37%) and Penicillium kongii (0.15%) were the putative pathogenic fungi. The long, oval, septate conidia of D. longispora was observed on all ascocarps. Oval asexual spores and sporogenic structures, such as those of Clonostachys, were also detected in C. solani infected samples with high ITS read abundance. Seven isolates of D. longispora were isolated from seven selected ascocarps lesions. The microscopic characteristics of pure cultures of these isolates were consistent with the morphological characteristics of ascocarps lesions. Diploöspora longispora had the highest amplification abundance in 93.75% of the samples, while C. solani had the highest amplification abundance in six biological samples (6.25%) of the remaining two sampling sites. The results demonstrate that D. longispora is a major culprit of morel fungal diseases. Other low-abundance non-host fungi appear to be saprophytic fungi infecting after D. longispora. This study provides data supporting the morphological and molecular identification and prevention of fungal diseases of morel ascocarps.
Collapse
Affiliation(s)
- Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Guizhou Kangqunyuan Biotechnology Co., Ltd., Liupanshui 553600, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Wei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
7
|
Xie G, Tang L, Xie Y, Xie L. Secondary Metabolites from Hericium erinaceus and Their Anti-Inflammatory Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072157. [PMID: 35408555 PMCID: PMC9000484 DOI: 10.3390/molecules27072157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022]
Abstract
Hericium erinaceus, a culinary and medicinal mushroom, is widely consumed in Asian countries. Chemical investigation on the fruiting bodies of Hericium erinaceus led to the isolation of one new ergostane-type sterol fatty acid ester, erinarol K (1); and eleven known compounds: 5α,8α -epidioxyergosta-6,22-dien-3β-yl linoleate (2); ethyl linoleate (3); linoleic acid (4); hericene A (5); hericene D (6); hericene E (7); ergosta-4,6,8(14),22-tetraen-3-one (8); hericenone F (9); ergosterol (10); ergosterol peroxide (11); 3β,5α,6α,22E-ergosta-7,22-diene-3,5,6-triol 6-oleate (12). The chemical structures of the compounds were determined by 1D and 2D NMR (nuclear magnetic resonance) spectroscopy, mass spectra, etc. Anti-inflammatory effects of the isolated aromatic compounds (5–7, 9) were evaluated in terms of inhibition of pro-inflammatory mediator (TNF-α, IL-6 and NO) production in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. The results showed that compounds 5 and 9 exhibited moderate activity against TNF-α (IC50: 78.50 μM and 62.46 μM), IL-6 (IC50: 56.33 μM and 48.50 μM) and NO (IC50: 87.31 μM and 76.16 μM) secretion. These results supply new information about the secondary metabolites of Hericium erinaceus and their anti-inflammatory effects.
Collapse
Affiliation(s)
- Guangbo Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
- Correspondence: (G.X.); (L.X.)
| | - Lan Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
| | - Yu Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (L.T.); (Y.X.)
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Correspondence: (G.X.); (L.X.)
| |
Collapse
|