1
|
Muñoz-García M, Scholz AH. Navigating COP16's digital sequence information outcomes: What researchers need to do in practice. PATTERNS (NEW YORK, N.Y.) 2025; 6:101208. [PMID: 40182173 PMCID: PMC11963070 DOI: 10.1016/j.patter.2025.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The UN Convention on Biological Diversity adopted new rules for sharing benefits from publicly available genetic sequence data, also known as digital sequence information (DSI). In this Opinion, the authors describe the key elements researchers need to be aware of, address real-life questions, and explain the practical implications of these rules for research and development.
Collapse
Affiliation(s)
- Melania Muñoz-García
- Leibniz-Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Amber Hartman Scholz
- Leibniz-Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
2
|
Te Aika B, Liggins L, Rye C, Perkins EO, Huh J, Brauning R, Godfery T, Black MA. Aotearoa genomic data repository: An āhuru mōwai for taonga species sequencing data. Mol Ecol Resour 2025; 25:e13866. [PMID: 37712601 PMCID: PMC11696480 DOI: 10.1111/1755-0998.13866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
The Aotearoa Genomic Data Repository (AGDR) is an initiative to provide a secure within-nation option for the storage, management and sharing of non-human genomic data generated from biological and environmental samples originating in Aotearoa New Zealand. This resource has been developed to follow the principles of Māori Data Sovereignty, and to enable the right of kaitiakitanga (guardianship), so that iwi, hapū and whānau (tribes, kinship groups and families) can effectively exercise their responsibilities as guardians over biological entities that they regard as taonga (precious or treasured). While the repository is designed to facilitate the sharing of data-making it findable by researchers and interoperable with data held in other genomic repositories-the decision-making process regarding who can access the data is entirely in the hands of those holding kaitiakitanga over each data set. No data are made available to the requesting researcher until the request has been approved, and the conditions for access (which can vary by data set) have been agreed to. Here we describe the development of the AGDR, from both a cultural perspective, and a technical one, and outline the processes that underpin its operation.
Collapse
Affiliation(s)
- Ben Te Aika
- Research and Enterprise OfficeUniversity of Otago, DunedinNew Zealand
| | - Libby Liggins
- School of Natural Sciences, Massey UniversityAucklandNew Zealand
- Genomics AotearoaNew Zealand
| | - Claire Rye
- New Zealand eScience InfrastructureUniversity of AucklandAucklandNew Zealand
| | - E. Owen Perkins
- New Zealand eScience InfrastructureUniversity of AucklandAucklandNew Zealand
| | - Jun Huh
- New Zealand eScience InfrastructureUniversity of AucklandAucklandNew Zealand
| | - Rudiger Brauning
- Genomics AotearoaNew Zealand
- Invermay Agricultural Centre, AgResearch Ltd, MosgielOtagoNew Zealand
| | - Tracey Godfery
- Genomics AotearoaNew Zealand
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
| | - Michael A. Black
- Genomics AotearoaNew Zealand
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
3
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Espregueira Themudo G, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O'Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BMC Genomics 2024; 25:1025. [PMID: 39487448 PMCID: PMC11529218 DOI: 10.1186/s12864-024-10899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia.
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, 27858, USA
| | - Maximina H Yun
- CRTD/Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
- Historia Natural C.J. Marinkelle, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Simon T Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale, Seychelles
| | | | - Victor L N Araújo
- Department of Biological Sciences, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Lorenzo V Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4810, Australia
| | - Gary M Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, KS, 66045, USA
| | - Ying Chen
- Biology Department, Queen's University, Kingston, ON, Canada
| | - Angelica Crottini
- Centro de Investigação Em Biodiversidade E Recursos Genéticos, CIBIOInBIO Laboratório AssociadoUniversidade Do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, I-50019, Italy
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Jessica M da Silva
- Evolutionary Genomics and Wildlife Management, Foundational Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town, 7735, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Robert D Denton
- Department of Biology, Marian University, Indianapolis, IN, 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Department of Life Science, Konrad-Lorenz-Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões Matosinhos, Avenida General Norton de Matos, Matosinhos, S/N, Portugal
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, UK
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, UK
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, 1015, Biophore, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, , Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Kevin P Mulder
- Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476, Potsdam, Germany
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, Belfast, BT7 1NN, UK
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, UK
| | - Anthony A Snead
- Department of Biology, New York University, New York, NY, USA
| | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | | | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
4
|
Kosch TA, Torres-Sánchez M, Liedtke HC, Summers K, Yun MH, Crawford AJ, Maddock ST, Ahammed MS, Araújo VLN, Bertola LV, Bucciarelli GM, Carné A, Carneiro CM, Chan KO, Chen Y, Crottini A, da Silva JM, Denton RD, Dittrich C, Themudo GE, Farquharson KA, Forsdick NJ, Gilbert E, Che J, Katzenback BA, Kotharambath R, Levis NA, Márquez R, Mazepa G, Mulder KP, Müller H, O’Connell MJ, Orozco-terWengel P, Palomar G, Petzold A, Pfennig DW, Pfennig KS, Reichert MS, Robert J, Scherz MD, Siu-Ting K, Snead AA, Stöck M, Stuckert AMM, Stynoski JL, Tarvin RD, Wollenberg Valero KC. The Amphibian Genomics Consortium: advancing genomic and genetic resources for amphibian research and conservation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601086. [PMID: 39005434 PMCID: PMC11244923 DOI: 10.1101/2024.06.27.601086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.
Collapse
Affiliation(s)
- Tiffany A. Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Kyle Summers
- Biology Department, East Carolina University, Greenville, NC, USA 27858
| | - Maximina H. Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J. Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
- Museo de Historia Natural C.J. Marinkelle, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Simon T. Maddock
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Anse Royale Seychelles
| | | | - Victor L. N. Araújo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lorenzo V. Bertola
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4810, Australia
| | - Gary M. Bucciarelli
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, USA
| | - Albert Carné
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Céline M. Carneiro
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Kin O. Chan
- University of Kansas Biodiversity Institute and Natural History Museum, Lawrence, Kansas 66045, USA
| | - Ying Chen
- Biology Department, Queen’s University, Kingston, Ontario, Canada
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169– 007 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jessica M. da Silva
- Evolutionary Genomics and Wildlife Management, Foundatonal Biodiversity Science, Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands 7735, Cape Town, South Africa
- Centre for Evolutionary Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa
| | - Robert D. Denton
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Carolin Dittrich
- Rojas Lab, Konrad-Lorenz-Institute of Ethology, Department of Life Science, University of Veterinary Medicine, Vienna, Austria
| | - Gonçalo Espregueira Themudo
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, Matosinhos, Portugal
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Edward Gilbert
- School of Natural Sciences, The University of Hull, Hull, HU6 7RX, United Kingdom
- Energy and Environment Institute, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Jing Che
- Key Laboratory of Genetic Evolution and Animal Models, and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar
| | | | - Ramachandran Kotharambath
- Herpetology Lab, Dept. of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, 671320, India
| | - Nicholas A. Levis
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Roberto Márquez
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Glib Mazepa
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Switzerland
- Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kevin P. Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hendrik Müller
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | - Mary J. O’Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Museum Avenue, CF10 3AX Cardiff, United Kingdom
| | - Gemma Palomar
- Department of Genetics, Physiology, and Microbiology; Faculty of Biological Sciences; Complutense University of Madrid, Madrid, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Alice Petzold
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str.24-25, 14476 Potsdam, Germany
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karin S. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark D. Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Karen Siu-Ting
- School of Biological Sciences, Queen’s University Belfast, Belfast, BT7 1NN, Northern Ireland, United Kingdom
- Instituto Peruano de Herpetología, Ca. Augusto Salazar Bondy 136, Surco, Lima, Peru
- Herpetology Lab, The Natural History Museum, London, United Kingdom
| | | | - Matthias Stöck
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, D-12587 Berlin, Germany
| | - Adam M. M. Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | | | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
5
|
Baek J, Lawson J, Rahimzadeh V. Investigating the Roles and Responsibilities of Institutional Signing Officials After Data Sharing Policy Reform for Federally Funded Research in the United States: National Survey. JMIR Form Res 2024; 8:e49822. [PMID: 38506894 PMCID: PMC10993121 DOI: 10.2196/49822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND New federal policies along with rapid growth in data generation, storage, and analysis tools are together driving scientific data sharing in the United States. At the same, triangulating human research data from diverse sources can also create situations where data are used for future research in ways that individuals and communities may consider objectionable. Institutional gatekeepers, namely, signing officials (SOs), are therefore at the helm of compliant management and sharing of human data for research. Of those with data governance responsibilities, SOs most often serve as signatories for investigators who deposit, access, and share research data between institutions. Although SOs play important leadership roles in compliant data sharing, we know surprisingly little about their scope of work, roles, and oversight responsibilities. OBJECTIVE The purpose of this study was to describe existing institutional policies and practices of US SOs who manage human genomic data access, as well as how these may change in the wake of new Data Management and Sharing requirements for National Institutes of Health-funded research in the United States. METHODS We administered an anonymous survey to institutional SOs recruited from biomedical research institutions across the United States. Survey items probed where data generated from extramurally funded research are deposited, how researchers outside the institution access these data, and what happens to these data after extramural funding ends. RESULTS In total, 56 institutional SOs participated in the survey. We found that SOs frequently approve duplicate data deposits and impose stricter access controls when data use limitations are unclear or unspecified. In addition, 21% (n=12) of SOs knew where data from federally funded projects are deposited after project funding sunsets. As a consequence, most investigators deposit their scientific data into "a National Institutes of Health-funded repository" to meet the Data Management and Sharing requirements but also within the "institution's own repository" or a third-party repository. CONCLUSIONS Our findings inform 5 policy recommendations and best practices for US SOs to improve coordination and develop comprehensive and consistent data governance policies that balance the need for scientific progress with effective human data protections.
Collapse
Affiliation(s)
| | | | - Vasiliki Rahimzadeh
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Hudson M, Carroll SR, Anderson J, Blackwater D, Cordova-Marks FM, Cummins J, David-Chavez D, Fernandez A, Garba I, Hiraldo D, Jäger MB, Jennings LL, Martinez A, Sterling R, Walker JD, Rowe RK. Indigenous Peoples' Rights in Data: a contribution toward Indigenous Research Sovereignty. Front Res Metr Anal 2023; 8:1173805. [PMID: 37215248 PMCID: PMC10192690 DOI: 10.3389/frma.2023.1173805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Indigenous Peoples' right to sovereignty forms the foundation for advocacy and actions toward greater Indigenous self-determination and control across a range of domains that impact Indigenous Peoples' communities and cultures. Declarations for sovereignty are rising throughout Indigenous communities and across diverse fields, including Network Sovereignty, Food Sovereignty, Energy Sovereignty, and Data Sovereignty. Indigenous Research Sovereignty draws in the sovereignty discourse of these initiatives to consider their applications to the broader research ecosystem. Our exploration of Indigenous Research Sovereignty, or Indigenous self-determination in the context of research activities, has been focused on the relationship between Indigenous Data Sovereignty and efforts to describe Indigenous Peoples' Rights in data.
Collapse
Affiliation(s)
- Maui Hudson
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
| | - Stephanie Russo Carroll
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Jane Anderson
- Anthropology and Program in Museum Studies, New York University, New York, NY, United States
| | | | - Felina M. Cordova-Marks
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| | - Jewel Cummins
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Dominique David-Chavez
- Forest and Rangeland Stewardship Department, Colorado State University, Fort Collins, CO, United States
| | - Adam Fernandez
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Ibrahim Garba
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Danielle Hiraldo
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
- American Indian Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mary Beth Jäger
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Lydia L. Jennings
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Andrew Martinez
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Rogena Sterling
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
| | | | - Robyn K. Rowe
- School of Computing, Queen's University, Kingston, ON, Canada
| |
Collapse
|
7
|
Mc Cartney AM, Head MA, Tsosie KS, Sterner B, Glass JR, Paez S, Geary J, Hudson M. Indigenous peoples and local communities as partners in the sequencing of global eukaryotic biodiversity. NPJ BIODIVERSITY 2023; 2:8. [PMID: 38693997 PMCID: PMC11062294 DOI: 10.1038/s44185-023-00013-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/17/2023] [Indexed: 05/03/2024]
Abstract
The aim to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity is the shared mission of many ongoing large-scale biodiversity genomics initiatives. Reference genomes of global flora and fauna have the potential to inform a broad range of major issues facing both biodiversity and humanity, such as the impact of climate change, the conservation of endangered species and ecosystems, public health crises, and the preservation and enhancement of ecosystem services. Biodiversity is dramatically declining: 28% of species being assessed by the IUCN are threatened with extinction, and recent reports suggest that a transformative change is needed to conserve and protect what remains. To provide a collective and global genomic response to the biodiversity crisis, many biodiversity genomics initiatives have come together, creating a network of networks under the Earth BioGenome Project. This network seeks to expedite the creation of an openly available, "public good" encyclopedia of high-quality eukaryotic reference genomes, in the hope that by advancing our basic understanding of nature, it can lead to the transformational scientific developments needed to conserve and protect global biodiversity. Key to completing this ambitious encyclopedia of reference genomes, is the ability to responsibly, ethically, legally, and equitably access and use samples from all of the eukaryotic species across the planet, including those that are under the custodianship of Indigenous Peoples and Local Communities. Here, the biodiversity genomics community is subject to the provisions codified in international, national, and local legislations and customary community norms, principles, and protocols. We propose a framework to support biodiversity genomic researchers, projects, and initiatives in building trustworthy and sustainable partnerships with communities, providing minimum recommendations on how to access, utilize, preserve, handle, share, analyze, and communicate samples, genomics data, and associated Traditional Knowledge obtained from, and in partnership with, Indigenous Peoples and Local Communities across the data-lifecycle.
Collapse
Affiliation(s)
| | - M. A. Head
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
| | - K. S. Tsosie
- Native BioData Consortium, Eagle Butte, SD USA
- School of Life Sciences, Arizona State University, Tempe, AZ USA
| | - B. Sterner
- School of Life Sciences, Arizona State University, Tempe, AZ USA
| | - J. R. Glass
- Department of Fisheries, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK USA
| | - S. Paez
- Neurogenetics of Language, The Rockefeller University, New York, NY USA
| | - J. Geary
- School for the Future of Innovation in Society, Arizona State University, Tempe, AZ USA
| | - M. Hudson
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
8
|
Carroll SR, Plevel R, Jennings LL, Garba I, Sterling R, Cordova-Marks FM, Hiratsuka V, Hudson M, Garrison NA. Extending the CARE Principles from tribal research policies to benefit sharing in genomic research. Front Genet 2022; 13:1052620. [PMID: 36437947 PMCID: PMC9691892 DOI: 10.3389/fgene.2022.1052620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/19/2022] [Indexed: 08/11/2023] Open
Abstract
Indigenous Peoples have historically been targets of extractive research that has led to little to no benefit. In genomics, such research not only exposes communities to harms and risks of misuse, but also deprives such communities of potential benefits. Tribes in the US have been exercising their sovereignty to limit this extractive practice by adopting laws and policies to govern research on their territories and with their citizens. Federally and state recognized tribes are in the strongest position to assert research oversight. Other tribes lack the same authority, given that federal and state governments do not recognize their rights to regulate research, resulting in varying levels of oversight by tribes. These governance measures establish collective protections absent from the US federal government's research oversight infrastructure, while setting expectations regarding benefits to tribes as political collectives. Using a legal epidemiology approach, the paper discusses findings from a review of Tribal research legislation, policy, and administrative materials from 26 tribes in the US. The discussion specifies issues viewed by tribes as facilitators and barriers to securing benefits from research for their nations and members/citizens, and describes preemptive and mitigating strategies pursued by tribes in response. These strategies are set within the framing of the CARE Principles for Indigenous Data Governance (Collective Benefit, Authority to Control, Responsibility, Ethics), a set of standards developed to ensure that decisions made about data pertaining to Indigenous communities at the individual and tribal levels are responsive to their values and collective interests. Our findings illustrate gaps to address for benefit sharing and a need to strengthen Responsibility and Ethics in tribal research governance.
Collapse
Affiliation(s)
- Stephanie Russo Carroll
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Rebecca Plevel
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
- Law Library, School of Law, University of South Carolina, Columbia, SC, United States
| | - Lydia L. Jennings
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Ibrahim Garba
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
- Native Nations Institute, Udall Center for Studies in Public Policy, University of Arizona, Tucson, AZ, United States
| | - Rogena Sterling
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
| | - Felina M. Cordova-Marks
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| | - Vanessa Hiratsuka
- Center for Human Development, College of Health, University of Alaska Anchorage, Anchorage, AK, United States
| | - Maui Hudson
- Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand
| | - Nanibaa’ A. Garrison
- Institute for Society and Genetics, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Division of General Internal Medicine & Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|