1
|
Wang B, Wang J, Beacher NJ, Lin DT, Zhang Y. Cell-type specific epigenetic and transcriptional mechanisms in substance use disorder. Front Cell Neurosci 2025; 19:1552032. [PMID: 40226298 PMCID: PMC11985801 DOI: 10.3389/fncel.2025.1552032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Substance use disorder (SUD) is a chronic and relapse-prone neuropsychiatric disease characterized by impaired brain circuitry within multiple cell types and neural circuits. Recent advancements in single-cell transcriptomics, epigenetics, and neural circuit research have unveiled molecular and cellular alterations associated with SUD. These studies have provided valuable insights into the transcriptional and epigenetic regulation of neuronal and non-neuronal cells, particularly in the context of drug exposure. Critical factors influencing the susceptibility of individuals to SUD include the regulation of gene expression during early developmental stages, neuroadaptive responses to psychoactive substances, and gene-environment interactions. Here we briefly review some of these mechanisms underlying SUD, with an emphasis on their crucial roles in in neural plasticity and maintenance of addiction and relapse in neuronal and non-neuronal cell-types. We foresee the possibility of integrating multi-omics technologies to devise targeted and personalized therapeutic strategies aimed at both the prevention and treatment of SUD. By utilizing these advanced methodologies, we can gain a deeper understanding of the fundamental biology of SUD, paving the way for more effective interventions.
Collapse
Affiliation(s)
- Bin Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiale Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
2
|
Thompson DA, Kaizer LK, Schmiege SJ, Cabrera NJ, Clark L, Ringwood H, Miramontes Valdes E, Tschann JM. Measuring attraction to screen devices in early childhood: development of the Affinity-TV and Affinity-Mobile scales. Front Pediatr 2025; 13:1496225. [PMID: 40109280 PMCID: PMC11919659 DOI: 10.3389/fped.2025.1496225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction With the increasing integration of digital screen devices into our everyday life, there has been increased attention regarding the risk of "problematic" use or pathological use. Because children start using screen devices in the first few years of life, early identification of those at risk for future problematic use could inform early prevention efforts. Children's attraction to screen devices in early childhood may identify those at risk for future problematic use; however currently, there are no measures of toddlers' attraction or affinity to screen devices. The objective of this study was to develop survey measures of toddler affinity to screen media, inclusive of televisions, smartphones, and tablets. Methods Measures were developed using an exploratory sequential mixed methods (qualitative -> quantitative) approach. Participants were Mexican American mothers of toddlers 15-26 months old. Findings from semi-structured interviews were used to develop items reflecting parental reports of child affinity to screen devices. Items were administered by phone to 384 mothers. Analyses included evaluation of the factor structure and psychometric properties of Affinity-TV (10 items) and Affinity-Mobile (12 items), and evaluations of correlations between each scale with social emotional outcomes and demographic characteristics. Results Factor analysis supported a one-factor solution for each scale. Reliabilities were acceptable for both scales (Cronbach's alpha > .75). There was a significant positive correlation between Affinity-TV and Affinity-Mobile (rs = 0.44, p < 0.001). Affinity-TV was significantly positively correlated with toddler average daily minutes of TV use (rs = 0.27, p < 0.001) and average daily minutes of mobile use (rs = 0.10, p < 0.05). Affinity-Mobile was significantly positively correlated with toddler average daily minutes of mobile use (rs = 0.31, p < 0.001), but not with average daily minutes of TV (rs = -0.04, NS). Each scale was correlated with social emotional developmental outcomes. Discussion The Affinity-TV and Affinity-Mobile scales have good initial reliability and adequate predictive validity. These findings support the use of Affinity-TV and Affinity-Mobile in toddlers as measures of children's attraction to screen devices. These measures may help to identify early risk for problematic use, and they offer a novel way to evaluate a child's behavioral reaction to screen devices in early childhood.
Collapse
Affiliation(s)
- Darcy A Thompson
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Adult & Child Center for Outcomes Research & Delivery Science, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura K Kaizer
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sarah J Schmiege
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Natasha J Cabrera
- College of Education, University of Maryland, College Park, MD, United States
| | - Lauren Clark
- School of Nursing, University of California, Los Angeles, CA, United States
| | - Haley Ringwood
- Department of Family Medicine, Denver Health and Hospital Authority, Denver, CO, United States
- Department of Family Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Estefania Miramontes Valdes
- Adult & Child Center for Outcomes Research & Delivery Science, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeanne M Tschann
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States
| |
Collapse
|
3
|
Peeters LD, Wills LJ, Cuozzo AM, Ahmed CD, Massey SR, Chen W, Chen Z, Wang C, Gass JT, Brown RW. Effects of positive mGlu5 modulation on D 2 signaling and nicotine-conditioned place preference: Mechanisms of epigenetic inheritance in a transgenerational model of drug abuse vulnerability in psychosis. J Psychopharmacol 2025; 39:265-281. [PMID: 39462877 PMCID: PMC11845308 DOI: 10.1177/02698811241292902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BACKGROUND The metabotropic glutamate type 5 (mGlu5) receptor has emerged as a potential target for the treatment of psychosis that is suggested to have greater efficacy than antipsychotic medications that are currently utilized. AIMS This study sought to elucidate mechanisms of therapeutic action associated with the modulation of the mGlu5 receptor in a disordered system marked by dopamine dysfunction. We further explored epigenetic mechanisms contributing to heritable transmission of a psychosis-like phenotype in a novel heritable model of drug abuse vulnerability in psychosis. METHODS F1 generation male and female Sprague-Dawley rats that were the offspring of two neonatal quinpirole-treated (QQ) or two saline-treated (SS) animals were tested on nicotine-conditioned place preference (CPP). Regulators of G protein signaling 9 (RGS9) and β-arrestin 2 (βA2), which mediate dopamine (DA) D2 signaling, were measured in the nucleus accumbens shell, prelimbic and infralimbic cortices. Reduced Representation Bisulfite Sequencing (RRBS) was used to analyze the cytosine methylation in these brain regions. RESULTS Pretreatment with the mGlu5-positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) 20 min prior to conditioning trials blocked enhanced nicotine CPP and mitigated aberrant G protein-dependent and -independent signaling in QQ animals. RRBS analysis revealed region-specific changes in several pathways, including nicotine addiction, dopamine synapses, and neural connectivity. CONCLUSIONS These results reveal an important region-specific mechanism of action for CDPPB in a system marked by enhanced DAD2 receptor signaling. Results additionally reveal DNA methylation as an epigenetic mechanism of heritability, further validating the current model as a useful tool for the study of psychosis and comorbid nicotine use.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Liza J Wills
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Cristal D Ahmed
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Samuel R Massey
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Wanqiu Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhong Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Justin T Gass
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Russell W Brown
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
4
|
Fanfarillo F, Ferraguti G, Lucarelli M, Fuso A, Ceccanti M, Terracina S, Micangeli G, Tarani L, Fiore M. The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders. Curr Med Chem 2024; 31:5837-5855. [PMID: 37828672 DOI: 10.2174/0109298673256937231004093143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
5
|
Vavilis T, Stamoula E, Sachinidis A, Lamprinou M, Dardalas I, Papazisis G. Biopharmaceuticals against substance use disorders - Present and future. Eur J Pharmacol 2023; 944:175587. [PMID: 36775113 DOI: 10.1016/j.ejphar.2023.175587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Pharmacological treatments available for substance use disorder (SUD) focus on pharmacodynamics, agonizing or antagonizing the drug of abuse (DOA) on receptor level. Drawbacks of this approach include the reliance on long-term patient compliance, on-target off-site effects, perpetuation of addiction and unavailability for many DOAs. Newer, pharmacokinetic approaches are needed that restrict DOA's access to the brain or disrupt DOA-instated brain changes maintaining addiction. Biotechnology might be able to provide the right biopharmaceutical tools to deliver a fine-tuned solution with less side effects compared to currently available treatments. METHODS This review examines the available literature on biopharmaceuticals developed to treat SUD. RESULTS Active and passive immunization, metabolic enhancers that augment DOA metabolism and clearance, as well as genetic/epigenetic modulation are promising next generation SUD treatments. Active immunization relies on production of antidrug antibodies by means of vaccination, while passive immunization constitutes of exogenous administration of such antibodies. Metabolic enhancers include drug-specific metabolizing enzymes that can be administered or secreted by modified skin grafts, as well as catalytic antibodies that hasten DOA metabolism. Nanotechnological advances can also allow for brain delivery of siRNAs, mRNAs or DNA in order to modulate central, common in all addictions, genetic or epigenetic targets attenuating drug seeking behavior and reversing drug-induced brain changes. CONCLUSIONS and Scientific Significance: Biopharmaceuticals can in the future complement or even replace traditional pharmacodynamics approaches in SUD treatment. While passive and active immunization biopharmaceuticals have entered human clinical trials, metabolic enhancers and genetic approaches are at the preclinical level.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Dentistry, European University Cyprus, Nicosia, 2404, Cyprus.
| | - Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece; Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Clinical Research Unit, Special Unit for Biomedical Research and Education (SUBRE), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Dragic D, Chang SL, Ennour-Idrissi K, Durocher F, Severi G, Diorio C. Association between alcohol consumption and DNA methylation in blood: a systematic review of observational studies. Epigenomics 2022; 14:793-810. [PMID: 35762294 DOI: 10.2217/epi-2022-0055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We systematically reviewed and evaluated current literature on alcohol consumption and DNA methylation (DNAm) at the genome-wide and probe-wise level in blood of adults. Materials & methods: Five databases (PubMed, Embase, Web of Science, CINAHL and PsycInfo) were searched until 20 December 2020. Studies assessing the effect of alcohol dependence on DNAm were not eligible. Results: 11 cross-sectional studies were included with 88 to 9643 participants. Overall, all studies had a risk of bias criteria unclear or unmet. Epigenome-wide association studies identified between 0 and 5458 differentially methylated positions, and 15 were observed in at least four studies. Conclusion: Potential methylation markers for alcohol consumption have been identified, but further validation in large cohorts is needed.
Collapse
Affiliation(s)
- Dzevka Dragic
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome & Heredity" team, Gustave Roussy, Villejuif, 94807, France
| | - Sue-Ling Chang
- Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada
| | - Kaoutar Ennour-Idrissi
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry & Pathology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Francine Durocher
- Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome & Heredity" team, Gustave Roussy, Villejuif, 94807, France.,Department of Statistics, Computer Science & Applications "G. Parenti" (DISIA), University of Florence, Florence, 50134, Italy
| | - Caroline Diorio
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Deschênes-Fabia Center for Breast Diseases, Saint-Sacrement Hospital, Quebec, QC, G1S 4L8, Canada
| |
Collapse
|
7
|
Whole Genome DNA Methylation Profiling of D2 Medium Spiny Neurons in Mouse Nucleus Accumbens Using Two Independent Library Preparation Methods. Genes (Basel) 2022; 13:genes13020306. [PMID: 35205351 PMCID: PMC8872013 DOI: 10.3390/genes13020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
DNA methylation plays essential roles in various cellular processes. Next-generation sequencing has enabled us to study the functional implication of DNA methylation across the whole genome. However, this approach usually requires a substantial amount of genomic DNA, which limits its application to defined cell types within a discrete brain region. Here, we applied two separate protocols, Accel-NGS Methyl-Seq (AM-seq) and Enzymatic Methyl-seq (EM-seq), to profile the methylome of D2 dopamine receptor-expressing medium spiny neurons (D2-MSNs) in mouse nucleus accumbens (NAc). Using 40 ng DNA extracted from FACS-isolated D2-MSNs, we found that both methods yielded comparably high-quality methylome data. Additionally, we identified numerous unmethylated regions (UMRs) as cell type-specific regulatory regions. By comparing the NAc D2-MSN methylome with the published methylomes of mouse prefrontal cortex excitatory neurons and neural progenitor cells (NPCs), we identified numerous differentially methylated CpG and non-CpG regions. Our study not only presents a comparison of these two low-input DNA whole genome methylation profiling protocols, but also provides a resource of DNA methylome of mouse accumbal D2-MSNs, a neuron type that has critical roles in addiction and other neuropsychiatric disorders.
Collapse
|