1
|
Datkhilea KD, Gudur RA, Bhosale SJ, Durgawale PP, Jagdale NJ, More AL, Gudur AK, Patil SR. Impact of Interaction between Single Nucleotide Polymorphism of XRCC1, XRCC2, XRCC3 with Tumor Suppressor Tp53 Gene Increases Risk of Breast Cancer: A Hospital Based Case-Control Study. Asian Pac J Cancer Prev 2023; 24:3065-3075. [PMID: 37774058 PMCID: PMC10762731 DOI: 10.31557/apjcp.2023.24.9.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND At present very little information is available on combined effects of DNA repair genes with tumor suppressor gene polymorphisms and their association with cancer susceptibility. No such association studies have been carried out with breast cancer or any other cancer from India. Present study was conducted to study the combined effects of SNPs of XRCC1, XRCC2, XRCC3 with Arg72Pro and Arg249Ser SNPs of TP53 gene in risk of BC in rural parts of India. METHODS The polymorphisms of Arg194Trp, Arg280His, Arg399Gln of XRCC1, Arg188His of XRCC2 and Thr241Met of XRCC3 with Arg72Pro and Arg249Ser of TP53 gene polymorphisms was studied by polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) method. The association among the polymorphisms with breast cancer risk was studied by Odds ratio within 95% confidence interval and SNP-SNP interaction were confirmed by logistic regression analysis. RESULTS The results of genotype frequency distribution of XRCC1, XRCC2, XRCC3 genotypes showed positive association between XRCC1 Arg280His polymorphism and BC risk (OR=4.54; 95% CI: 3.36- 6.15; p<0.0001). Also the heterozygous genotypes Arg188His of XRCC2 (OR=1.58; 95% CI: 1.13- 2.21; p=0.007) and Thr241Met genotype of XRCC3 (OR=2.13; 95% CI: 1.44- 3.13; p=0.0001) were associated with BC risk. The combination of heterozygous Arg280His genotype of XRCC1 along with Arg72Pro genotype of TP53 increased the risk of BC (OR=4.53; 95% CI: 2.85-7.20); p<0.0001). Similarly, the combined effect of heterozygous Arg/His genotype of XRCC1 with heterozygous Arg/Ser genotype of TP53 at codon 249 showed significant association with increased BC risk (OR=5.08; 95% CI: 2.86-9.04); p<0.0001). CONCLUSION The findings derived from our study concluded that the heterozygous variant Arg280His genotype of XRCC1 and Thr241Met polymorphism of XRCC3 in combination with heterozygous arginine72proline genotype and heterozygous Arg249Ser polymorphism of TP53 showed significant association with breast cancer risk in Maharashtrian women.
Collapse
Affiliation(s)
- Kailas D. Datkhilea
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Rashmi A. Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Suresh J. Bhosale
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Pratik P. Durgawale
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Nilam J. Jagdale
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Ashwini L. More
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Anand K. Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| | - Satish R. Patil
- Department of Molecular Biology & Genetics, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.
| |
Collapse
|
2
|
Datkhile KD, Bhosale SJ, Durgawale PP, Jagdale NJ, More AL, Gudur RA, Gudur AK, Patil SR. TP53 (rs1042522, rs28934571) and TP21 (rs1801270, rs1059234) Polymorphisms and Risk of Breast Cancer among Rural Women of Maharashtra: Findings from a Hospital Based Case- Control Study. Asian Pac J Cancer Prev 2023; 24:1611-1619. [PMID: 37247280 PMCID: PMC10495895 DOI: 10.31557/apjcp.2023.24.5.1611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Various studies all around the world depicted the relationship of polymorphisms in tumor suppressor genes with risk of various cancers, but there are unambiguous conclusions on this association. A hospital based case-control study was designed to review the association of polymorphism of tumor suppressor genes p21 and p53 with breast cancer risk in women residing in rural Maharashtra. METHODS Two single nucleotide polymorphisms (SNPs) a C>A transversion (Ser>Arg) at codon 31 of exon 2 (rs1801270), C>T transition occurring 20bp upstream from stop codon of exon 3 (rs1059234) in p21 gene and G>C (Arg>Pro) transition at codon 72 of exon 4 (rs1042522), G>T (Arg>Ser) transition at codon 249 in exon 7 (rs28934571) in p53 gene were studied. To precise the quantitative assessment, we enrolled 800 subjects sorted into 400 clinically confirmed breast cancer patients and 400 healthy women from a tertiary care hospital (Krishna Hospital and Medical Research Centre) of south-western Maharashtra. The genetic polymorphisms in p21 and p53 genes was studied by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method using blood genomic DNA isolated from breast cancer patients and controls. The level of association of polymorphisms was assessed using Odds ratio (OR) with 95% confidence interval and p-value identified using logistic regression model. RESULTS After the analysis of SNPs (rs1801270, rs1059234) of p21 and (rs1042522, rs28934571) in p53 gene our analysis suggested that heterozygote Ser/Arg genotype with OR=0.66; 95% CI: 0.47- 0.91; p=0.0003 and homozygote variant Arg/Arg genotype with OR=0.23; 95% CI: 0.13- 0.40; p<0.0001of rs1801270 of p21 was negatively associated with risk of breast cancer in studied population. CONCLUSION The findings from this study supported that rs1801270 SNP of p21 was inversely associated with breast cancer risk in the studied rural women population.
Collapse
Affiliation(s)
- Kailas D Datkhile
- Department of Molecular Biology & Genetics, Krishna Institute of Medical Sciences, “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| | - Suresh J Bhosale
- Department of Oncology, Krishna Institute of Medical Sciences “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| | - Pratik P Durgawale
- Department of Molecular Biology & Genetics, Krishna Institute of Medical Sciences, “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| | - Nilam J Jagdale
- Department of Molecular Biology & Genetics, Krishna Institute of Medical Sciences, “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| | - Ashwini L More
- Department of Molecular Biology & Genetics, Krishna Institute of Medical Sciences, “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| | - Rashmi A Gudur
- Department of Oncology, Krishna Institute of Medical Sciences “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| | - Anand K Gudur
- Department of Oncology, Krishna Institute of Medical Sciences “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| | - Satish R Patil
- Department of Oncology, Krishna Institute of Medical Sciences “Deemed to be University”, Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra), India.
| |
Collapse
|
3
|
Pereira EEB, Modesto AAC, Fernandes BM, Burbano RMR, Assumpção PP, Fernandes MR, Guerreiro JF, dos Santos SEB, dos Santos NPC. Association between Polymorphism of Genes IL-1A, NFKB1, PAR1, TP53, and UCP2 and Susceptibility to Non-Small Cell Lung Cancer in the Brazilian Amazon. Genes (Basel) 2023; 14:461. [PMID: 36833388 PMCID: PMC9957054 DOI: 10.3390/genes14020461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 02/15/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the vast majority of cases of lung neoplasms. It is formed in multiple stages, with interactions between environmental risk factors and individual genetic susceptibility and with genes involved in the immune and inflammatory response paths, cell or genome stability, and metabolism, among others. Our objective was to evaluate the association between five genetic variants (IL-1A, NFKB1, PAR1, TP53, and UCP2) and the development of NSCLC in the Brazilian Amazon. The study included 263 individuals with and without lung cancer. The samples were analyzed for the genetic variants of NFKB1 (rs28362491), PAR1 (rs11267092), TP53 (rs17878362), IL-1A (rs3783553), and UCP2 (INDEL 45-bp), which were genotyped in PCR, followed by an analysis of the fragments, in which we applied a previously developed set of informative ancestral markers. We used a logistic regression model to identify differences in the allele and the genotypic frequencies among individuals and their association with NSCLC. The variables of gender, age, and smoking were controlled in the multivariate analysis to prevent confusion by association. The individuals that were homozygous for the Del/Del of polymorphism NFKB1 (rs28362491) (p = 0.018; OR = 0.332) demonstrate a significant association with NSCLC, which was similar to that observed in the variants of PAR1 (rs11267092) (p = 0.023; OR = 0.471) and TP53 (rs17878362) (p = 0.041; OR = 0.510). Moreover, the individuals with the Ins/Ins genotype of polymorphism IL-1A (rs3783553) demonstrated greater risk for NSCLC (p = 0.033; OR = 2.002), as did the volunteers with the Del/Del of UCP2 (INDEL 45-bp) (p = 0.031; OR = 2.031). The five polymorphisms investigated can contribute towards NSCLC susceptibility in the population of the Brazilian Amazon.
Collapse
Affiliation(s)
- Esdras E. B. Pereira
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
- Instituto Tocantinense Presidente Antônio Carlos (ITPAC), Abaetetuba 68440-000, PA, Brazil
| | - Antônio A. C. Modesto
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Bruno M. Fernandes
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Rommel M. R. Burbano
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Paulo P. Assumpção
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | | | - João F. Guerreiro
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
| | - Sidney E. B. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| | - Ney P. C. dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Science, Federal University of Pará, Belem 66077-830, PA, Brazil
- Oncology Research Center, Federal University of Pará, Belem 66073-005, PA, Brazil
| |
Collapse
|
4
|
Classic and New Markers in Diagnostics and Classification of Breast Cancer. Cancers (Basel) 2022; 14:cancers14215444. [PMID: 36358862 PMCID: PMC9654192 DOI: 10.3390/cancers14215444] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary With ever-increasing incidence, breast cancer is considered a most diagnosed type of cancer among women worldwide. Breast cancer arises through malignant transformation of ductal or lobular cells in female (or male) breast and the genetic, phenotypic and morphological heterogeneity has an effect on tumour’s behaviour, thereby instigating a need for individual personalized therapy. A traditional assessment of tumour’s characteristics involves a biopsy and histological analysis of a tumour tissue, and in recent years has been accompanied by analysis of molecular biomarkers to enhance the results. In this work we aimed to thoroughly investigate the latest data in this field of study and give a comprehensive review of novel molecular biomarkers of breast cancer and methodologies used to analyse them. Abstract Breast cancer remains the most frequently diagnosed form of female’s cancer, and in recent years it has become the most common cause of cancer death in women worldwide. Like many other tumours, breast cancer is a histologically and biologically heterogeneous disease. In recent years, considerable progress has been made in diagnosis, subtyping, and complex treatment of breast cancer with the aim of providing best suited tumour-specific personalized therapy. Traditional methods for breast cancer diagnosis include mammography, MRI, biopsy and histological analysis of tumour tissue in order to determine classical markers such as estrogen and progesterone receptors (ER, PR), cytokeratins (CK5/6, CK14, C19), proliferation index (Ki67) and human epidermal growth factor type 2 receptor (HER2). In recent years, these methods have been supplemented by modern molecular methodologies such as next-generation sequencing, microRNA, in situ hybridization, and RT-qPCR to identify novel molecular biomarkers. MicroRNAs (miR-10b, miR-125b, miR145, miR-21, miR-155, mir-30, let-7, miR-25-3p), altered DNA methylation and mutations of specific genes (p16, BRCA1, RASSF1A, APC, GSTP1), circular RNA (hsa_circ_0072309, hsa_circRNA_0001785), circulating DNA and tumour cells, altered levels of specific proteins (apolipoprotein C-I), lipids, gene polymorphisms or nanoparticle enhanced imaging, all these are promising diagnostic and prognostic tools to disclose any specific features from the multifaceted nature of breast cancer to prepare best suited individualized therapy.
Collapse
|
5
|
Floris M, Pira G, Castiglia P, Idda M, Steri M, De Miglio M, Piana A, Cossu A, Azara A, Arru C, Deiana G, Putzu C, Sanna V, Carru C, Serra A, Bisail M, Muroni M. Impact on breast cancer susceptibility and clinicopathological traits of common genetic polymorphisms in TP53, MDM2 and ATM genes in Sardinian women. Oncol Lett 2022; 24:331. [PMID: 36039053 PMCID: PMC9404703 DOI: 10.3892/ol.2022.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022] Open
Abstract
Common variants of genes involved in DNA damage correction [tumor protein p53 (TP53), murine double 2 homolog oncoprotein (MDM2) and ataxia-telengiectasia mutated (ATM)] may serve a role in cancer predisposition. The purpose of the present study was to investigate the association of five variants in these genes with breast cancer risk and clinicopathological traits in a cohort of 261 women from northern Sardinia. Polymorphic variants in TP53 (rs17878362, rs1042522 and rs1625895), MDM2 (rs2279744) and ATM (rs1799757) were determined by PCR and TaqMan single nucleotide polymorphism assay in patients with breast cancer (n=136) and healthy controls (n=125). Association with clinicopathological (e.g., age at diagnosis, lymph node involvement, clinical stage) and lifestyle factors (e.g., smoking status, alcohol intake, contraceptive use) was also evaluated. TP53 rs17878362 and rs1625895 polymorphisms were associated with decreased risk of BC diagnosis in patients older than 50 years (codominant and recessive models) and post-menopause (recessive model). Furthermore, there was a significant association between lymph node status (positive vs. negative) and ATM rs1799757-delT in dominant and additive models and between MDM2 rs2279744-allele and use of oral contraceptives. This analysis suggested that TP53 rs17878362 and rs1625895 may affect age of onset of breast cancer and ATM rs1799757 and MDM2 rs2279744 may be associated with lymph node status and prolonged use of oral contraceptives, respectively.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Maria Idda
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Piana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonio Azara
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Deiana
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Carlo Putzu
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Valeria Sanna
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonello Serra
- Unit of Occupational Medicine, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Marco Bisail
- Lega Italiana per la Lotta contro i Tumori, Sassari, I-07100 Sardinia, Italy
| | - Maria Muroni
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| |
Collapse
|