1
|
Lu T, Guo W, Guo W, Meng W, Han T, Guo Z, Li C, Gao S, Ye Y, Li H. A novel computational model ITHCS for enhanced prognostic risk stratification in ESCC by correcting for intratumor heterogeneity. Brief Bioinform 2024; 26:bbae631. [PMID: 39690882 DOI: 10.1093/bib/bbae631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Intratumor heterogeneity significantly challenges the accuracy of existing prognostic models for esophageal squamous cell carcinoma (ESCC) by introducing biases related to the varied genetic and molecular landscapes within tumors. Traditional models, relying on single-sample, single-region bulk RNA sequencing, fall short of capturing the complexity of intratumor heterogeneity. To fill this gap, we developed a computational model for intratumor heterogeneity corrected signature (ITHCS) by employing both multiregion bulk and single-cell RNA sequencing to pinpoint genes that exhibit consistent expression patterns across different tumor regions but vary significantly among patients. Utilizing these genes, we applied multiple machine-learning algorithms for sophisticated feature selection and model construction. The ITHCS model significantly outperforms existing prognostic indicators in accuracy and generalizability, markedly reducing sampling biases caused by intratumor heterogeneity. This improvement is especially notable in the prognostic assessment of early-stage ESCC patients, where the model exhibits exceptional predictive power. Additionally, we found that the risk score based on ITHCS may be associated with epithelial-mesenchymal transition characteristics, indicating that high-risk patients may exhibit a diminished efficacy to immunotherapy.
Collapse
Affiliation(s)
- Tong Lu
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, Huangpu District, Shanghai 200025, China
| | - Wei Guo
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, Huangpu District, Shanghai 200025, China
| | - Tianyi Han
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, Huangpu District, Shanghai 200025, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth Peoples Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200011, China
| | - Chengqiang Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, Huangpu District, Shanghai 200025, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| |
Collapse
|
2
|
Zhang J, Liu X, Zeng L, Hu Y. GABRP inhibits the progression of oesophageal cancer by regulating CFTR: Integrating bioinformatics analysis and experimental validation. Int J Exp Pathol 2024; 105:118-132. [PMID: 38989629 PMCID: PMC11263814 DOI: 10.1111/iep.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Oesophageal cancer (EC) is a malignancy which accounts for a substantial number of cancer-related deaths worldwide. The molecular mechanisms underlying the pathogenesis of EC have not been fully elucidated. GSE17351 and GSE20347 data sets from the Gene Expression Omnibus (GEO) database were employed to screen differentially expressed genes (DEGs). Reverse transcription quantitative PCR (RT-qPCR) was used to examine hub gene expression. ECA-109 and TE-12 cells were transfected using the pcDNA3.1 expression vector encoding GABRP. The cell counting kit-8 (CCK-8), cell scratch and Transwell assays were performed to assess the effect of GABRP on EC cell proliferation, migration and invasion. Epithelial-mesenchymal transition (EMT)-associated protein levels were measured by Western blotting. Subsequently, CFTR was knocked down to verify whether GABRP affected biological events in EC cells by targeting CFTR. Seven hub genes were identified, including GABRP, FLG, ENAH, KLF4, CD24, ABLIM3 and ABLIM1, which all could be used as diagnostic biomarkers for EC. The RT-qPCR results indicated that the expression levels of GABRP, FLG, KLF4, CD24, ABLIM3 and ABLIM1 were downregulated, whereas the expression level of ENAH was upregulated. In vitro functional assays demonstrated that GABRP overexpression suppressed the proliferation, migration, invasion and EMT of EC cells. Mechanistically, GABRP promoted the expression of CFTR, and CFTR knockdown significantly counteracted the influence of GABRP overexpression on biological events in EC cells. Overexpression of GABRP inhibited EC progression by increasing CFTR expression, which might be a new target for EC treatment.
Collapse
Affiliation(s)
- Jingzhi Zhang
- Department of GastroenterologyThe Affiliated Ganzhou Hospital of Nanchang UniversityGanzhou CityChina
| | - Xue Liu
- Department of GastroenterologyThe Affiliated Ganzhou Hospital of Nanchang UniversityGanzhou CityChina
| | - Ling Zeng
- Department of GastroenterologyThe Affiliated Ganzhou Hospital of Nanchang UniversityGanzhou CityChina
| | - Ying Hu
- Department of GastroenterologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityChina
| |
Collapse
|
3
|
Zhang H, Yin M, Huang H, Zhao G, Lu M. METTL16 in human diseases: What should we do next? Open Med (Wars) 2023; 18:20230856. [PMID: 38045858 PMCID: PMC10693013 DOI: 10.1515/med-2023-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
METTL16 is a class-I methyltransferase that is responsible for depositing a vertebrate-conserved S-adenosylmethionine site. Since 2017, there has been a growing body of research focused on METTL16, particularly in the field of structural studies. However, the role of METTL16 in cell biogenesis and human diseases has not been extensively studied, with limited understanding of its function in disease pathology. Recent studies have highlighted the complex and sometimes contradictory role that METTL16 plays in various diseases. In this work, we aim to provide a comprehensive summary of the current research on METTL16 in human diseases.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Wuhan Tongji Aerospace City Hospital, Wuhan, Hubei Province, 430000, China
| | - Mengqi Yin
- Department of Neurology, Wuhan No. 1 Hospital, Wuhan, Hubei Province, 430000, China
| | - Hua Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Gongfang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Mingliang Lu
- Department of Gastroenterology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| |
Collapse
|
4
|
Ermis Akyuz E, Bell SM. The Diverse Role of CUB and Sushi Multiple Domains 1 (CSMD1) in Human Diseases. Genes (Basel) 2022; 13:genes13122332. [PMID: 36553598 PMCID: PMC9778380 DOI: 10.3390/genes13122332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large membrane-bound protein including a single transmembrane domain. This transmembrane region has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellular functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered, it has been linked to a number of processes including development, complement control, neurodevelopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular processes involved in the complement system, metastasis, and Epithelial mesenchymal transition (EMT) and also in the diseases schizophrenia, Parkinson's disease, and cancer. Clarifying the association between CSMD1 and the aforementioned diseases will contribute to the development of new diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gastric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the involvement of CSMD1 in response to immunotherapy.
Collapse
|
5
|
Liu Z, Su R, Ahsan A, Liu C, Liao X, Tian D, Su M. Esophageal Squamous Cancer from 4NQO-Induced Mice Model: CNV Alterations. Int J Mol Sci 2022; 23:ijms232214304. [PMID: 36430789 PMCID: PMC9698903 DOI: 10.3390/ijms232214304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Squamous esophageal carcinoma is a common pathological type of esophageal carcinoma around the world. The prognosis of esophageal carcinoma is usually poor and diagnosed at late stages. Recently, research suggested that genomic instability occurred in esophageal cells during the development of esophageal squamous cell carcinoma (ESCC). Identifying prognostic and specific genomic characteristics, especially at the early hyperplasia stage, is critical. Mice were given 4-nitroquinoline 1-oxide (4NQO) with drinking water to induce esophageal cancer. The immortalized human esophageal epithelial cell line (NE2) was also treated with 4NQO. We performed histologic analyses, immunofluorescence, and immunohistochemical staining to detect DNA damage at different time points. Whole-exome sequencing was accomplished on the esophagus tissues at different pathological stages to detect single-nucleotide variants and copy number variation (CNV) in the genome. Our findings indicate that all mice were tumor-forming, and a series of changes from simple hyperplasia (ESSH) to intraepithelial neoplasia (IEN) to esophageal squamous cell carcinoma (ESCC) was seen at different times. The expression of γ-H2AX increased from ESSH to ESCC. In addition, mutations of the Muc4 gene were detected throughout the pathological stages. Furthermore, CNV burden appeared in the esophageal tissues from the beginning of ESSH and accumulated more in cancer with the deepening of the lesions. This study demonstrates that mutations caused by the early appearance of DNA damage may appear in the early stage of malignant tissue before the emergence of atypia. The detection of CNV and mutations of the Muc4 gene may be used as an ultra-early screening indicator for esophageal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Su
- Correspondence: ; Fax: +86-0754-88900429
| |
Collapse
|