1
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|