1
|
He K, Liang C, Ma S, Liu H, Zhu Y. Copy number and selection of MHC genes in ruminants are related to habitat, average life span and diet. Gene 2024; 904:148179. [PMID: 38242373 DOI: 10.1016/j.gene.2024.148179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The ruminants, as the main group of livestock, have been extensively studied in terms of their physiology, endocrinology, biochemistry, genetics, and nutrition. Despite the wide geographic distribution and habitat diversity of animals in this group, their ecology and evolution remain poorly understood. In this study, we analyzed the gene copy number, selection, and ecological and evolutionary processes that have affected the evolution of major histocompatibility complex (MHC) genes across ruminant lineages based on available genomic data. The 51 species analyzed represented all six families of ruminants. Our finding indicated that the architecture of the MHC region is conserved in ruminants, but with variable copy numbers of MHC-I, MHC-IIA, and MHC-IIB genes. No lineage-specific gene duplication was observed in the MHC genes. The phylogenetic generalized least squares regression (PGLS) model revealed association between ecological and biological factors (habitat and lifespan) and gene duplication in DQA and DQB, but not in DRB. The selection pressure of DQA and DQB were related with lifespan, diet, and the ratio of genetic repeat elements. These results suggest that the MHC evolution in ruminants, including copy number and selection, has been influenced by genetic repeat elements, pathogen exposure risk, and intrinsic cost of possessing multiple MHC genes.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Chunhong Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Shujuan Ma
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
2
|
Minniakhmetov I, Yalaev B, Khusainova R, Bondarenko E, Melnichenko G, Dedov I, Mokrysheva N. Genetic and Epigenetic Aspects of Type 1 Diabetes Mellitus: Modern View on the Problem. Biomedicines 2024; 12:399. [PMID: 38398001 PMCID: PMC10886892 DOI: 10.3390/biomedicines12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Omics technologies accumulated an enormous amount of data that advanced knowledge about the molecular pathogenesis of type 1 diabetes mellitus and identified a number of fundamental problems focused on the transition to personalized diabetology in the future. Among them, the most significant are the following: (1) clinical and genetic heterogeneity of type 1 diabetes mellitus; (2) the prognostic significance of DNA markers beyond the HLA genes; (3) assessment of the contribution of a large number of DNA markers to the polygenic risk of disease progress; (4) the existence of ethnic population differences in the distribution of frequencies of risk alleles and genotypes; (5) the infancy of epigenetic research into type 1 diabetes mellitus. Disclosure of these issues is one of the priorities of fundamental diabetology and practical healthcare. The purpose of this review is the systemization of the results of modern molecular genetic, transcriptomic, and epigenetic investigations of type 1 diabetes mellitus in general, as well as its individual forms. The paper summarizes data on the role of risk HLA haplotypes and a number of other candidate genes and loci, identified through genome-wide association studies, in the development of this disease and in alterations in T cell signaling. In addition, this review assesses the contribution of differential DNA methylation and the role of microRNAs in the formation of the molecular pathogenesis of type 1 diabetes mellitus, as well as discusses the most currently central trends in the context of early diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | - Bulat Yalaev
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | | | | | | | | | | |
Collapse
|
3
|
Napolitano C, Sacristán I, Acuña F, Aguilar E, García S, López-Jara MJ, Cabello J, Hidalgo-Hermoso E, Poulin E, Grueber CE. Assessing micro-macroparasite selective pressures and anthropogenic disturbance as drivers of immune gene diversity in a Neotropical wild cat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166289. [PMID: 37591403 DOI: 10.1016/j.scitotenv.2023.166289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Anthropogenic environmental change is reducing available habitat for wild species, providing novel selection pressures such as infectious diseases and causing species to interact in new ways. The potential for emerging infectious diseases and zoonoses at the interface between humans, domestic animals, and wild species is a key global concern. In vertebrates, diversity at the major histocompatibility complex MHC is critical to disease resilience, and its study in wild populations provides insights into eco-evolutionary dynamics that human activities alter. In natural populations, variation at MHC loci is partly maintained by balancing selection, driven by pathogenic selective pressures. We hypothesize that MHC genetic diversity differs between guigna populations inhabiting human-dominated landscapes (higher pathogen pressures) versus more natural habitats (lower pathogen pressures). We predict that MHC diversity in guignas would be highest in human-dominated landscapes compared with continuous forest habitats. We also expected to find higher MHC diversity in guignas infected with micro and macro parasites (higher parasite load) versus non infected guignas. We characterized for the first time the genetic diversity at three MHC class I and II exons in 128 wild guignas (Leopardus guigna) across their distribution range in Chile (32-46° S) and Argentina, representing landscapes with varying levels of human disturbance. We integrated MHC sequence diversity with multiple measures of anthropogenic disturbance and both micro and macro parasite infection data. We also assessed signatures of positive selection acting on MHC genes. We found significantly higher MHC class I diversity in guignas inhabiting landscapes where houses were present, and with lower percentage of vegetation cover, and also in animals with more severe cardiorespiratory helminth infection (richness and intensity) and micro-macroparasite co-infection. This comprehensive, landscape-level assessment further enhances our knowledge on the evolutionary dynamics and adaptive potential of vertebrates in the face of emerging infectious disease threats and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile; Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cape Horn International Center (CHIC), Puerto Williams, Chile.
| | - Irene Sacristán
- Universidad Andres Bello, Santiago, Chile; Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Centro Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Francisca Acuña
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Emilio Aguilar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sebastián García
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María José López-Jara
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javier Cabello
- Chiloé Silvestre Center for the Conservation of Biodiversity, Ancud, Chile
| | | | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems and Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Li TT, Xia T, Wu JQ, Hong H, Sun ZL, Wang M, Ding FR, Wang J, Jiang S, Li J, Pan J, Yang G, Feng JN, Dai YP, Zhang XM, Zhou T, Li T. De novo genome assembly depicts the immune genomic characteristics of cattle. Nat Commun 2023; 14:6601. [PMID: 37857610 PMCID: PMC10587341 DOI: 10.1038/s41467-023-42161-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023] Open
Abstract
Immunogenomic loci remain poorly understood because of their genetic complexity and size. Here, we report the de novo assembly of a cattle genome and provide a detailed annotation of the immunogenomic loci. The assembled genome contains 143 contigs (N50 ~ 74.0 Mb). In contrast to the current reference genome (ARS-UCD1.2), 156 gaps are closed and 467 scaffolds are located in our assembly. Importantly, the immunogenomic regions, including three immunoglobulin (IG) loci, four T-cell receptor (TR) loci, and the major histocompatibility complex (MHC) locus, are seamlessly assembled and precisely annotated. With the characterization of 258 IG genes and 657 TR genes distributed across seven genomic loci, we present a detailed depiction of immune gene diversity in cattle. Moreover, the MHC gene structures are integrally revealed with properly phased haplotypes. Together, our work describes a more complete cattle genome, and provides a comprehensive view of its complex immune-genome.
Collapse
Affiliation(s)
- Ting-Ting Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jia-Qi Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhao-Lin Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ming Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Fang-Rong Ding
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Guang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jian-Nan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yun-Ping Dai
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Jelinek AL, Futas J, Burger PA, Horin P. Comparative genomics of the Leukocyte Receptor Complex in carnivores. Front Immunol 2023; 14:1197687. [PMID: 37234165 PMCID: PMC10206138 DOI: 10.3389/fimmu.2023.1197687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Background The mammalian Leukocyte Receptor Complex (LRC) chromosomal region may contain gene families for the killer cell immunoglobulin-like receptor (KIR) and/or leukocyte immunoglobulin-like receptor (LILR) collections as well as various framing genes. This complex region is well described in humans, mice, and some domestic animals. Although single KIR genes are known in some Carnivora, their complements of LILR genes remain largely unknown due to obstacles in the assembly of regions of high homology in short-read based genomes. Methods As part of the analysis of felid immunogenomes, this study focuses on the search for LRC genes in reference genomes and the annotation of LILR genes in Felidae. Chromosome-level genomes based on single-molecule long-read sequencing were preferentially sought and compared to representatives of the Carnivora. Results Seven putatively functional LILR genes were found across the Felidae and in the Californian sea lion, four to five genes in Canidae, and four to nine genes in Mustelidae. They form two lineages, as seen in the Bovidae. The ratio of functional genes for activating LILRs to inhibitory LILRs is slightly in favor of inhibitory genes in the Felidae and the Canidae; the reverse is seen in the Californian sea lion. This ratio is even in all of the Mustelidae except the Eurasian otter, which has a predominance of activating LILRs. Various numbers of LILR pseudogenes were identified. Conclusions The structure of the LRC is rather conservative in felids and the other Carnivora studied. The LILR sub-region is conserved within the Felidae and has slight differences in the Canidae, but it has taken various evolutionary paths in the Mustelidae. Overall, the process of pseudogenization of LILR genes seems to be more frequent for activating receptors. Phylogenetic analysis found no direct orthologues across the Carnivora which corroborate the rapid evolution of LILRs seen in mammals.
Collapse
Affiliation(s)
- April L. Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
| | - Jan Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
- Research Group Animal Immunogenomics, Central European Institute of Technology (CEITEC) VETUNI, Brno, Czechia
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna (VETMEDUNI), Vienna, Austria
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czechia
- Research Group Animal Immunogenomics, Central European Institute of Technology (CEITEC) VETUNI, Brno, Czechia
| |
Collapse
|