1
|
Xiao Q, Li W, Hu P, Cheng J, Zheng Q, Li H, Li Z. An Integrated Method for Evaluation of Salt Tolerance in a Tall Wheatgrass Breeding Program. PLANTS (BASEL, SWITZERLAND) 2025; 14:983. [PMID: 40219063 PMCID: PMC11990777 DOI: 10.3390/plants14070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Tall wheatgrass, a perennial forage grass renowned for its salt-alkali tolerance, has recently been proposed as a key species for planting in coastal saline-alkaline lands to establish a "Coastal Grass Belt". Highly salt-tolerant and high-yielding varieties are essential to achieve this objective. To enhance breeding efficiency, a method integrating seed germination, seedling emergence, and seedling growth was established to evaluate salt tolerance in tall wheatgrass. Germination tests revealed that under 250 mM NaCl, 150 mM Na2SO4, 150 mM NaHCO3, or 100 mM Na2CO3, the relative seed germination rates were 31.5%, 65.4%, 68.2%, and 32.6%, respectively, compared to the non-stress condition. Germination tests can use 250 mM NaCl and 100 mM Na2CO3 to assess tall wheatgrass tolerance to neutral and sodic salt stress, respectively. In addition, 250 mM NaCl or saline water with ECw = 6.6 dS m-1 resulted in relative seedling emergence rates of 52% and 59.8%, respectively, compared to the non-stress condition. Seedling hydroponic culture demonstrated that exposure to 300 mM NaCl resulted in relative total dry weight, shoot dry weight, and root dry weight of 38.2%, 35.7% and 50%, respectively, compared to the non-stress condition. Salt-response genes exhibited differential expression in tall wheatgrass under long-term and short-term salt stress. Interestingly, the expression levels of NHX7.1 and NCL1 were significantly higher in salt-tolerant lines compared to salt-sensitive lines. Based on an integrated evaluation of seed germination, seedling emergence, and seedling growth, five out of the 28 tall wheatgrass lines were identified as salt-tolerant. Additionally, two Tritipyrum lines, derived from the cross of Triticum aestivum cv. Xinong 6028 and Thinopyrum ponticum line Zhongyan 1, were found to inherit salt tolerance from tall wheatgrass. Collectively, this work provided an integrated method for salt tolerance testing in a tall wheatgrass breeding program.
Collapse
Affiliation(s)
- Qiang Xiao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Q.X.); (W.L.); (P.H.); (Q.Z.); (Z.L.)
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Q.X.); (W.L.); (P.H.); (Q.Z.); (Z.L.)
- College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Pan Hu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Q.X.); (W.L.); (P.H.); (Q.Z.); (Z.L.)
| | - Jianfeng Cheng
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Zheng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Q.X.); (W.L.); (P.H.); (Q.Z.); (Z.L.)
| | - Hongwei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Q.X.); (W.L.); (P.H.); (Q.Z.); (Z.L.)
| | - Zhensheng Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Q.X.); (W.L.); (P.H.); (Q.Z.); (Z.L.)
| |
Collapse
|
2
|
Liu Y, Liu Q, Yi C, Liu C, Shi Q, Wang M, Han F. Past innovations and future possibilities in plant chromosome engineering. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:695-708. [PMID: 39612312 PMCID: PMC11869185 DOI: 10.1111/pbi.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Plant chromosome engineering has emerged as a pivotal tool in modern plant breeding, facilitating the transfer of desirable traits through the incorporation of alien chromosome fragments into plants. Here, we provide a comprehensive overview of the past achievements, current methodologies and future prospects of plant chromosome engineering. We begin by examining the successful integration of specific examples such as the incorporation of rye chromosome segments (e.g. the 1BL/1RS translocation), Dasypyrum villosum segments (e.g. the 6VS segment for powdery mildew resistance), Thinopyrum intermedium segments (e.g. rust resistance genes) and Thinopyrum elongatum segments (e.g. Fusarium head blight resistance genes). In addition to trait transfer, advancements in plant centromere engineering have opened new possibilities for chromosomal manipulation. This includes the development of plant minichromosomes via centromere-mediated techniques, the generation of haploids through CENH3 gene editing, and the induction of aneuploidy using KaryoCreate. The advent of CRISPR/Cas technology has further revolutionized chromosome engineering, enabling large-scale chromosomal rearrangements, such as inversions and translocations, as well as enabling targeted insertion of large DNA fragments and increasing genetic recombination frequency. These advancements have significantly expanded the toolkit for genetic improvement in plants, opening new horizons for the future of plant breeding.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qian Liu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Congyang Yi
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Chang Liu
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Qinghua Shi
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mian Wang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Fangpu Han
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Tounsi S, Giorgi D, Kuzmanović L, Jrad O, Farina A, Capoccioni A, Ben Ayed R, Brini F, Ceoloni C. Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic Thinopyrum species greatly enhance tolerance of recipient durum wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1378186. [PMID: 38766466 PMCID: PMC11099908 DOI: 10.3389/fpls.2024.1378186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Increased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic Thinopyrum species. "Primary" recombinant lines (RLs), having portions of their 7AL arms distally replaced by 7el1L Th. ponticum segments, and "secondary" RLs, harboring Th. elongatum 7EL insertions "nested" into 7el1L segments, in addition to near-isogenic lines lacking any alien segment (CLs), cv. Om Rabia (OR) as salt tolerant control, and BW introgression lines with either most of 7el1 or the complete 7E chromosome substitution as additional CLs, were subjected to moderate (100 mM) and intense (200 mM) salt (NaCl) stress at early growth stages. The applied stress altered cell cycle progression, determining a general increase of cells in G1 and a reduction in S phase. Assessment of morpho-physiological and biochemical traits overall showed that the presence of Thinopyrum spp. segments was associated with considerably increased salinity tolerance versus its absence. For relative water content, Na+ accumulation and K+ retention in roots and leaves, oxidative stress indicators (malondialdehyde and hydrogen peroxide) and antioxidant enzyme activities, the observed differences between stressed and unstressed RLs versus CLs was of similar magnitude in "primary" and "secondary" types, suggesting that tolerance factors might reside in defined 7el1L shared portion(s). Nonetheless, the incremental contribution of 7EL segments emerged in various instances, greatly mitigating the effects of salt stress on root and leaf growth and on the quantity of photosynthetic pigments, boosting accumulation of compatible solutes and minimizing the decrease of a powerful antioxidant like ascorbate. The seemingly synergistic effect of 7el1L + 7EL segments/genes made "secondary" RLs able to often exceed cv. OR and equal or better perform than BW lines. Thus, transfer of a suite of genes from halophytic germplasm by use of fine chromosome engineering strategies may well be the way forward to enhance salinity tolerance of glycophytes, even the sensitive DW.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Debora Giorgi
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Anna Farina
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Alessandra Capoccioni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Rayda Ben Ayed
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), University of Carthage, Tunis, Tunisia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, Hammam-lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
4
|
Deng P, Du X, Wang Y, Yang X, Cheng X, Huang C, Li T, Li T, Chen C, Zhao J, Wang C, Liu X, Tian Z, Ji W. GenoBaits®WheatplusEE: a targeted capture sequencing panel for quick and accurate identification of wheat-Thinopyrum derivatives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:36. [PMID: 38291310 DOI: 10.1007/s00122-023-04538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE A total of 90,000 capture probes derived from wheat and Thinopyrum elongatum were integrated into one chip, which served as an economical genotype for explorating Thinopyrumspecies and their derivatives. Thinopyrum species play a crucial role as a source of new genetic variations for enhancing wheat traits, including resistance to both abiotic and biotic factors. Accurate identification of exogenous chromosome(s) or chromosome segments or genes is essential following the introduction of alien genetic material into wheat, but this task remains challenging. This study aimed to develop a high-resolution wheat-Thinopyrum elongatum array, named GenoBaits®WheatplusEE, to trace alien genetic information by genotyping using a target sequencing system. This GenoBaits®WheatplusEE array included 90,000 capture probes derived from two species and integrated into one chip, with 10,000 and 80,000 originating from wheat and Th. elongatum, respectively. The capture probes were strategically positioned in genes and evenly distributed across the genome, facilitating the development of a roadmap for identifying each alien gene. The array was applied to the high-throughput identification of the alien chromosomes or segments in Thinopyrum and distantly related species and their derivatives. Our results demonstrated that the GenoBaits®WheatplusEE array could be used for direct identification of the breakpoint of alien segments, determine copy number of alien chromosomes, and reveal variations in wheat chromosomes by a single round of target sequencing of the sample. Additionally, we could efficiently and cost-effectively genotype, supporting the exploration of subgenome composition, phylogenetic relationships, and polymorphisms in essential genes (e.g., Fhb7 gene) among Thinopyrum species and their derivatives. We hope that GenoBaits®WheatplusEE will become a widely adopted tool for exporting wild germplasm for wheat improvement in the future.
Collapse
Affiliation(s)
- Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Xiaoying Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofang Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenxi Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingting Li
- College of Bioengineering, Yangling Vocational Technical College, Yangling, 712100, Shaanxi, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengrong Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Zhang J, Liang Q, Li Y, Deng Z, Song G, Wang H, Yan M, Wang X. Integrated transcriptome and metabolome analyses shed light on the defense mechanisms in tomato plants after (E)-2-hexenal fumigation. Genomics 2023; 115:110592. [PMID: 36854356 DOI: 10.1016/j.ygeno.2023.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Tomato is a widely cultivated fruit and vegetable and is valued for its flavor, colour, and nutritional value. C6-aldehydes, such as (E)-2-hexenal, not only have antibacterial and antifungal properties but also function as signaling molecules that control the defense mechanisms of plants, including tomatoes. In this study, we used liquid chromatography-mass spectrometry (LC-MS) and RNA sequencing techniques to generate metabolome and transcriptome datasets that elucidate the molecular mechanisms regulating defense responses in tomato leaves exposed to (E)-2-hexenal. A total of 28.27 Gb of clean data were sequenced and assembled into 23,720 unigenes. In addition, a non-targeted metabolomics approach detected 739 metabolites. There were 233 significant differentially expressed genes (DEGs) (158 up-regulated, 75 down-regulated) and 154 differentially expressed metabolites (DEMs) (86 up-regulated, 69 down-regulated). Most nucleotides and amino acids (L-Phenylalanine, L-Asparagine, L-Histidine, L-Arginine, and L-Tyrosine) and their derivatives were enriched. The analyses revealed that mitogen-activated protein kinase (MPK), pathogenesis-related protein (PR), and endochitinase (CHIB) were primarily responsible for the adaptation of plant defense responses. Therefore, the extensive upregulation of these genes may be associated with the increased plant defense response. These findings help us comprehend the defense response of plants to (E)-2-hexenal and improve the resistance of horticultural plants.
Collapse
Affiliation(s)
- Jihong Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Quanwu Liang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuqiong Li
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China
| | - Ge Song
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens GA30602, USA
| |
Collapse
|