1
|
Qiu R, Yang M, Jin X, Liu J, Wang W, Zhang X, Han J, Lei B. AAV2-PDE6B restores retinal structure and function in the retinal degeneration 10 mouse model of retinitis pigmentosa by promoting phototransduction and inhibiting apoptosis. Neural Regen Res 2025; 20:2408-2419. [PMID: 39359097 PMCID: PMC11759017 DOI: 10.4103/nrr.nrr-d-23-01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00030/figure1/v/2024-09-30T120553Z/r/image-tiff Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death. However, there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation. Adeno-associated virus (AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa. The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function. To do this, we injected retinal degeneration 10 (rd10) mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark- and light-adapted electroretinogram, optical coherence tomography, and immunofluorescence. Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment, and the results from this analysis were verified by real-time polymerase chain reaction and western blotting. AAV2-PDE6B injection significantly upregulated PDE6β expression, preserved electroretinogram responses, and preserved outer nuclear layer thickness in rd10 mice. Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception, and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice. Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways. Furthermore, the phototransduction-related proteins Pde6α, Rom1, Rho, Aldh1a1, and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment. Finally, Bax/Bcl-2, p-ERK/ERK, and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment. Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
Collapse
Affiliation(s)
- Ruiqi Qiu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Mingzhu Yang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Xiuxiu Jin
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, China
| | - Jingyang Liu
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Weiping Wang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
| | - Xiaoli Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinfeng Han
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Lei
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou, Henan Province, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Kiraly P, Sperring S, Reichel FF, Fischer MD. Disparate X-linked retinoschisis phenotypes in fraternal twins with the same pathogenic variant in the RS1 gene. Ophthalmic Genet 2025:1-4. [PMID: 40090885 DOI: 10.1080/13816810.2025.2479522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/10/2024] [Accepted: 01/02/2025] [Indexed: 03/18/2025]
Abstract
INTRODUCTION In X-linked retinoschisis (XLRS), the RS1 pathogenic variant and the patient's age might be the most important determinants of the XLRS phenotype. In this case report, we present fraternal twins with the same RS1 pathogenic mutation who were examined at the same age yet exhibited significantly different phenotypes. METHODS This is a retrospective case report. Both patients underwent best-corrected visual acuity (BCVA) testing, slit-lamp examination, wide-field fundus imaging, optical coherence tomography (OCT), and genetic testing on the same day. RESULTS Fraternal twins, aged 21, were found to be hemizygous for the c.267T>A p. (Tyr89*) mutation in the RS1 gene. The first patient presented with a spoke-wheel pattern in the macula, extensive intraretinal cystoid cavities (ICC), and peripheral retinoschisis inferiorly and temporally, accompanied by breaks in the inner retinal layers. The second patient exhibited only tiny ICCs in the macula with mild disruption of the ellipsoid zone at the fovea and no peripheral retinoschisis. CONCLUSION Family members with the same pathogenic variant and of the same age can present with significantly different XLRS phenotypes. This highlights the importance of other factors, such as genetic modifiers, epigenetic regulatory events, and environmental influences, in contributing to phenotypic heterogeneity in XLRS patients.
Collapse
Affiliation(s)
- Peter Kiraly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Felix F Reichel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- University Eye Hospital Tübingen, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- University Eye Hospital Tübingen, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Suvannaboon R, Tuekprakhon A, Pawestri AR, Pongpaksupasin P, Trinavarat A, Atchaneeyasakul LO. The D126G mutation contributes to the early-onset X-linked juvenile retinoschisis. Sci Rep 2025; 15:541. [PMID: 39747991 PMCID: PMC11697308 DOI: 10.1038/s41598-024-84161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an inherited retinal disease caused by mutations in the RS1 gene, resulting in splitting of the retinal layers and visual disturbances. To provide insights on this disease in our cohort, genetic examination, clinical presentation, and functional analysis were performed. We observed three main RS1 mutations in our cohort of six unrelated patients: RS1-D126G, RS1-R209H, and RS1-R213W. The RS1-D126G mutation, exclusively reported in Thai patients so far, showed the highest prevalence. Phenotypically, the D126G mutation manifested early (0.3-4 years old), presenting as asymmetrical visual acuity and schisis. Functional analysis revealed that the molecular pathomechanism of D126G was the failure of protein secretion attributable to endoplasmic reticulum retention. The understanding of the genotype-phenotype relationship and the pathomechanisms of specific mutations in a particular population could immensely benefit the pipeline of personalised treatment design for XLRS.
Collapse
Affiliation(s)
- Ragkit Suvannaboon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Aekkachai Tuekprakhon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Phitchapa Pongpaksupasin
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
- Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
4
|
Yang M, Qiu R, Jin X, Yao S, Wang W, Liu J, Liu G, Han J, Lei B. Proteomics identifies multiple retinitis pigmentosa associated proteins involved in retinal degeneration in a mouse model bearing a Pde6b mutation. Sci Rep 2024; 14:22090. [PMID: 39333705 PMCID: PMC11437026 DOI: 10.1038/s41598-024-72821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Retinitis pigmentosa (RP) is a progressive and degenerative retinal disease resulting in severe vision loss. RP have been extensively studied for pathogenetic mechanisms and treatments. Yet there is little information about alterations of RP associated proteins in phosphodiesterase 6 beta (Pde6b) mutated model. To explore the roles of RP causing proteins, we performed a label free quantitative mass spectrometry based proteomic analysis in rd10 mouse retinas. 3737 proteins were identified at the degenerative time points in rd10 mice. 222 and 289 differentially expressed proteins (DEPs) (fold change, FC > 2, p < 0.05) were detected at 5 and 8 weeks. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, visual perception and phototransduction were severely affected. The downregulated DEPs were significantly enriched in cilium assembly and protein localization. 25 decreased DEPs causing autosomal recessive/dominant retinitis pigmentosa were visualized by heatmaps. Protein-protein interaction network represented 13 DEPs interacted directly with Pde6b protein. 25 DEPs causing RP were involved in phototransduction, visual perception, response to stimulus, protein localization and cilium assembly pathways. The significantly reduced expressions of DEPs were further validated by quantitative reverse transcription polymerase chain reaction (qPCR), Western blots (WB) and immunohistochemistry (IHC). This study revealed the molecular mechanisms underlying early and late stage of RP, as well as changes of RP-causing proteins.
Collapse
Affiliation(s)
- Mingzhu Yang
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China
| | - Ruiqi Qiu
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China
| | - Xiuxiu Jin
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China
| | - Shun Yao
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China
| | - Weiping Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China
| | - Jingyang Liu
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China
| | - Guangming Liu
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China
| | - Jinfeng Han
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Bo Lei
- Henan Provincial People's Hospital, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450003, China.
- Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
5
|
Duan C, Ding C, Sun X, Mao S, Liang Y, Liu X, Ding X, Chen J, Tang S. Retinal organoids with X-linked retinoschisis RS1 (E72K) mutation exhibit a photoreceptor developmental delay and are rescued by gene augmentation therapy. Stem Cell Res Ther 2024; 15:152. [PMID: 38816767 PMCID: PMC11140964 DOI: 10.1186/s13287-024-03767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND X-linked juvenile retinoschisis (XLRS) is an inherited disease caused by RS1 gene mutation, which leads to retinal splitting and visual impairment. The mechanism of RS1-associated retinal degeneration is not fully understood. Besides, animal models of XLRS have limitations in the study of XLRS. Here, we used human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) to investigate the disease mechanisms and potential treatments for XLRS. METHODS hiPSCs reprogrammed from peripheral blood mononuclear cells of two RS1 mutant (E72K) XLRS patients were differentiated into ROs. Subsequently, we explored whether RS1 mutation could affect RO development and explore the effectiveness of RS1 gene augmentation therapy. RESULTS ROs derived from RS1 (E72K) mutation hiPSCs exhibited a developmental delay in the photoreceptor, retinoschisin (RS1) deficiency, and altered spontaneous activity compared with control ROs. Furthermore, the delays in development were associated with decreased expression of rod-specific precursor markers (NRL) and photoreceptor-specific markers (RCVRN). Adeno-associated virus (AAV)-mediated gene augmentation with RS1 at the photoreceptor immature stage rescued the rod photoreceptor developmental delay in ROs with the RS1 (E72K) mutation. CONCLUSIONS The RS1 (E72K) mutation results in the photoreceptor development delay in ROs and can be partially rescued by the RS1 gene augmentation therapy.
Collapse
Affiliation(s)
- Chunwen Duan
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan, China
| | | | - Xihao Sun
- Aier Eye Institute, Changsha, Hunan, China
| | - Shengru Mao
- Aier Eye Institute, Changsha, Hunan, China
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Xinyu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, Guangdong, China.
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China.
- Aier Eye Institute, Changsha, Hunan, China.
- Guangzhou Aier Eye Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Kiraly P, Seitz IP, Abdalla Elsayed MEA, Downes SM, Patel CK, Charbel Issa P, Birtel J, Mautone L, Dulz S, Atiskova Y, Herrmann P, Vrabič N, Jarc-Vidmar M, Hawlina M, Fischer MD. Morphological and functional parameters in X-linked retinoschisis patients-A multicentre retrospective cohort study. Front Med (Lausanne) 2024; 10:1331889. [PMID: 38351967 PMCID: PMC10864009 DOI: 10.3389/fmed.2023.1331889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction X-linked retinoschisis (XLRS) is a potential target for gene supplementation approaches. To establish potential structural and functional endpoints for clinical trials, a comprehensive understanding of the inter-eye symmetry, relationship between structural and functional parameters, and disease progression is vital. Methods In this retrospective multicentre study, 118 eyes of 59 XLRS patients with RS1 mutations were assessed. Information from center databases included: RS1 variant; age at presentation; best-corrected visual acuity (BCVA), central retinal thickness (CRT), macular volume (MV) at presentation and at the last follow up; full-field electroretinogram (ERG) findings; presence of peripheral retinoschisis and complications (vitreous hemorrhage, retinal detachment); treatment with systemic or topical carbonic anhydrase inhibitors (CAI). Results Inter-eye symmetry revealed strong correlation in CRT (r = 0.77; p < 0.0001) and moderate correlations in MV (r = 0.51, p < 0.0001) and BCVA (r = 0.49; p < 0.0001). Weak or no correlations were observed between BCVA and structural parameters (CRT, MV). Peripheral retinoschisis was observed in 40 (68%), retinal detachment in 9 (15%), and vitreous hemorrhage in 5 (8%) patients, respectively. Longitudinal examinations (mean, 4.3 years) showed no BCVA changes; however, a reduction of the CRT (p = 0.02), and MV (p = 0.01) was observed. Oral and/or topical CAI treatment did not significantly alter the CRT (p = 0.34). Discussion The XLRS phenotype demonstrates a strong CRT symmetry between the eyes within individual patients and stable BCVA over several years. BCVA exhibits a weak correlation with the morphological parameters of retinal thickness (CRT MV). In our cohort, longitudinal functional changes were not significant, likely attributed to the short average follow-up period. Furthermore, CAI treatment didn't influence both morphological and functional outcomes.
Collapse
Affiliation(s)
- Peter Kiraly
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Immanuel P. Seitz
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | | | - Susan M. Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Chetan K. Patel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
| | - Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Luca Mautone
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Nika Vrabič
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Wang CT, Chang YH, Tan GSW, Lee SY, Chan RVP, Wu WC, Tsai ASH. Optical Coherence Tomography and Optical Coherence Tomography Angiography in Pediatric Retinal Diseases. Diagnostics (Basel) 2023; 13:diagnostics13081461. [PMID: 37189561 DOI: 10.3390/diagnostics13081461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Indirect ophthalmoscopy and handheld retinal imaging are the most common and traditional modalities for the evaluation and documentation of the pediatric fundus, especially for pre-verbal children. Optical coherence tomography (OCT) allows for in vivo visualization that resembles histology, and optical coherence tomography angiography (OCTA) allows for non-invasive depth-resolved imaging of the retinal vasculature. Both OCT and OCTA were extensively used and studied in adults, but not in children. The advent of prototype handheld OCT and OCTA have allowed for detailed imaging in younger infants and even neonates in the neonatal care intensive unit with retinopathy of prematurity (ROP). In this review, we discuss the use of OCTA and OCTA in various pediatric retinal diseases, including ROP, familial exudative vitreoretinopathy (FEVR), Coats disease and other less common diseases. For example, handheld portable OCT was shown to detect subclinical macular edema and incomplete foveal development in ROP, as well as subretinal exudation and fibrosis in Coats disease. Some challenges in the pediatric age group include the lack of a normative database and the difficulty in image registration for longitudinal comparison. We believe that technological improvements in the use of OCT and OCTA will improve our understanding and care of pediatric retina patients in the future.
Collapse
Affiliation(s)
- Chung-Ting Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
| | - Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
| | - Gavin S W Tan
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| | - R V Paul Chan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Illinois Eye and Ear Infirmary, Chicago, IL 60612, USA
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
8
|
Guo X, Zhou Y, Gu C, Wu Y, Liu H, Chang Q, Lei B, Wang M. Characteristics and Classification of Choroidal Caverns in Patients with Various Retinal and Chorioretinal Diseases. J Clin Med 2022; 11:jcm11236994. [PMID: 36498569 PMCID: PMC9740557 DOI: 10.3390/jcm11236994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To investigate the features of choroidal caverns in diverse retinal diseases with swept-source optical coherence tomography (SS-OCT). METHODS Subjects with normal eyes, retinitis pigmentosa (RP), wet age-related macular degeneration (wAMD), acute central serous chorioretinopathy (CSC), or chronic CSC were enrolled. The characteristics of choroidal caverns were evaluated with SS-OCT. The prevalence of choroidal caverns in retinal diseases and the correlations between the number, width and depth of choroidal caverns with the thickness of choroid were analyzed. RESULTS Among 315 eyes of 220 subjects, choroidal caverns were found in 110 eyes (34.9%). Choroidal caverns were divided into two categories based on their location and size. Type I was small and usually lobulated, presented in the choroidal capillary and Sattler's layers. Type II was larger, usually isolated, and presented in the Sattler's and Haller's layers. The prevalence of type I in subjects with normal eyes, RP, wAMD, acute CSC, or chronic CSC was 17.4%, 19.6%, 1.6%, 32.8%, and 85.2%, respectively, while that of type II was 0%, 0%, 21.3%, 13.8%, and 53.7%, respectively. The number, width, and thickness of type II choroidal caverns correlated positively with macular choroidal thickness. CONCLUSIONS Choroidal caverns could be divided into two categories. Type II choroidal caverns appeared associated with the pachychoroid spectrum and RPE atrophic diseases.
Collapse
Affiliation(s)
- Xiaohong Guo
- Henan Eye Hospital, Henan Eye Institute, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yao Zhou
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
| | - Chenyang Gu
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
| | - Yingjie Wu
- Henan Eye Hospital, Henan Eye Institute, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Hui Liu
- Henan Eye Hospital, Henan Eye Institute, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Qing Chang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
| | - Bo Lei
- Henan Eye Hospital, Henan Eye Institute, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Correspondence: (B.L.); (M.W.)
| | - Min Wang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College of Fudan University, Shanghai 200031, China
- Correspondence: (B.L.); (M.W.)
| |
Collapse
|
9
|
Retinal Proteomic Alterations and Combined Transcriptomic-Proteomic Analysis in the Early Stages of Progression of a Mouse Model of X-Linked Retinoschisis. Cells 2022; 11:cells11142150. [PMID: 35883593 PMCID: PMC9321393 DOI: 10.3390/cells11142150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
X-linked retinoschisis (XLRS) is among the most commonly inherited degenerative retinopathies. XLRS is caused by functional impairment of RS1. However, the molecular mechanisms underlying RS1 malfunction remain largely uncharacterized. Here, we performed a data-independent acquisition-mass spectrometry-based proteomic analysis in RS1-null mouse retina with different postal days (Ps), including the onset (P15) and early progression stage (P56). Gene set enrichment analysis showed that type I interferon-mediated signaling was upregulated and photoreceptor proteins responsible for detection of light stimuli were downregulated at P15. Positive regulation of Tor signaling was downregulated and nuclear transcribed mRNA catabolic process nonsense-mediated decay was upregulated at P56. Moreover, the differentially expressed proteins at P15 were enriched in metabolism of RNA and RNA destabilization. A broader subcellular localization distribution and enriched proteins in visual perception and phototransduction were evident at P56. Combined transcriptomic-proteomic analysis revealed that functional impairments, including detection of visible light, visual perception, and visual phototransduction, occurred at P21 and continued until P56. Our work provides insights into the molecular mechanisms underlying the onset and progression of an XLRS mouse model during the early stages, thus enhancing the understanding of the mechanism of XLRS.
Collapse
|
10
|
Liu M, Liu J, Wang W, Liu G, Jin X, Lei B. Longitudinal Photoreceptor Phenotype Observation and Therapeutic Evaluation of a Carbonic Anhydrase Inhibitor in a X-Linked Retinoschisis Mouse Model. Front Med (Lausanne) 2022; 9:886947. [PMID: 35836954 PMCID: PMC9273824 DOI: 10.3389/fmed.2022.886947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To study the long-term photoreceptor changes and to evaluate the effects of topical application of a carbonic anhydrase inhibitor (CAI) in a mouse model of X-linked retinoschisis (XLRS). Methods Conventional electroretinograms (ERGs) and dark-adapted 10-Hz flicker ERGs were recorded in control and Rs1−/Y mice generated with CRISPR/Cas9. ON-pathway blocker 2-amino-4-phosphobutyric acid (APB) was injected intravitreally. Morphology was evaluated with histology and optical coherence tomography (OCT). Mice were treated with a CAI inhibitor brinzolamide eye drops (10 mg/ml) three times a day for 3 months. OCT and ERG findings at 1, 4, and 10 months were analyzed. Results Negative ERGs and retinal cavities were evident in Rs1−/Y mice. Both a-wave and b-wave amplitudes decreased with age when compared with age-matched controls. The APB-isolated a-wave (a′) amplitudes of Rs1−/Y mice were reduced in all age groups. In dark-adapted 10-Hz flicker ERG, the amplitude-intensity curve of Rs1−/Y mice shifted down. The thickness of ONL and IS/OS decreased in Rs1−/Y mice. CAI reduced the splitting retinal cavities but didn't affect the ERG. Conclusions In addition to post receptoral impairments, photoreceptor cells underwent progressive dysfunction since early age in Rs1−/Y mice. Long-term CAI treatment improved the shrinkage of the splitting retinal cavity, while no functional improvement was observed.
Collapse
Affiliation(s)
- Meng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingyang Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Weiping Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guangming Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiuxiu Jin
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bo Lei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Bo Lei ; orcid.org/0000-0002-5497-0905
| |
Collapse
|