1
|
Kumaran G, Carroll L, Muirhead N, Bottomley MJ. How Can Spatial Transcriptomic Profiling Advance Our Understanding of Skin Diseases? J Invest Dermatol 2025; 145:522-535. [PMID: 39177547 DOI: 10.1016/j.jid.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Spatial transcriptomic (ST) profiling is the mapping of gene expression within cell populations with preservation of positional context and represents an exciting new approach to develop our understanding of local and regional influences upon skin biology in health and disease. With the ability to probe from a few hundred transcripts to the entire transcriptome, multiple ST approaches are now widely available. In this paper, we review the ST field and discuss its application to dermatology. Its potential to advance our understanding of skin biology in health and disease is highlighted through the illustrative examples of 3 research areas: cutaneous aging, tumorigenesis, and psoriasis.
Collapse
Affiliation(s)
- Girishkumar Kumaran
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Liam Carroll
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Matthew J Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
3
|
Sepetiene R, Patamsyte V, Valiukevicius P, Gecyte E, Skipskis V, Gecys D, Stanioniene Z, Barakauskas S. Genetical Signature-An Example of a Personalized Skin Aging Investigation with Possible Implementation in Clinical Practice. J Pers Med 2023; 13:1305. [PMID: 37763073 PMCID: PMC10532532 DOI: 10.3390/jpm13091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
We conducted a research study to create the groundwork for personalized solutions within a skin aging segment. This test utilizes genetic and general laboratory data to predict individual susceptibility to weak skin characteristics, leveraging the research on genetic polymorphisms related to skin functional properties. A cross-sectional study was conducted in a collaboration between the Private Clinic Medicina Practica Laboratory (Vilnius, Lithuania) and the Public Institution Lithuanian University of Health Sciences (Kaunas, Lithuania). A total of 370 participants agreed to participate in the project. The median age of the respondents was 40, with a range of 19 to 74 years. After the literature search, we selected 15 polymorphisms of the genes related to skin aging, which were subsequently categorized in terms of different skin functions: SOD2 (rs4880), GPX1 (rs1050450), NQO1 (rs1800566), CAT (rs1001179), TYR (rs1126809), SLC45A2 (rs26722), SLC45A2 (rs16891982), MMP1 (rs1799750), ELN (rs7787362), COL1A1 (rs1800012), AHR (rs2066853), IL6 (rs1800795), IL1Beta (rs1143634), TNF-α (rs1800629), and AQP3 (rs17553719). RT genotyping, blood count, and immunochemistry results were analyzed using statistical methods. The obtained results show significant associations between genotyping models and routine blood screens. These findings demonstrate the personalized medicine approach for the aging segment and further add to the growing literature. Further investigation is warranted to fully understand the complex interplay between genetic factors, environmental influences, and skin aging.
Collapse
Affiliation(s)
- Ramune Sepetiene
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50162 Kaunas, Lithuania; (V.P.); (E.G.); (V.S.); (D.G.); (Z.S.)
- Abbott GmbH, Max-Planck-Ring 2, 65205 Wiesbaden, Germany
| | - Vaiva Patamsyte
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50162 Kaunas, Lithuania; (V.P.); (E.G.); (V.S.); (D.G.); (Z.S.)
| | - Paulius Valiukevicius
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania;
| | - Emilija Gecyte
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50162 Kaunas, Lithuania; (V.P.); (E.G.); (V.S.); (D.G.); (Z.S.)
| | - Vilius Skipskis
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50162 Kaunas, Lithuania; (V.P.); (E.G.); (V.S.); (D.G.); (Z.S.)
| | - Dovydas Gecys
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50162 Kaunas, Lithuania; (V.P.); (E.G.); (V.S.); (D.G.); (Z.S.)
| | - Zita Stanioniene
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 15, LT-50162 Kaunas, Lithuania; (V.P.); (E.G.); (V.S.); (D.G.); (Z.S.)
| | - Svajunas Barakauskas
- LTD Medicina Practica Laboratorija, Laisves Pr. 78B, LT-05263 Vilnius, Lithuania;
| |
Collapse
|