1
|
Li L, Li D, Wang J, Dai Y. Single-cell RNA sequencing reveals key regulators and differentiation trajectory of iPSC-derived cardiomyocytes. Sci Rep 2024; 14:29268. [PMID: 39587160 PMCID: PMC11589621 DOI: 10.1038/s41598-024-79488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Cardiac differentiation of human pluripotent stem cells is not only a new strategy of regenerative therapy for cardiovascular disease treatment but also provides unique opportunities for the study of in vitro disease models and human heart development. To elucidate the dynamic gene regulatory networks and pivotal regulators involved in the cardiomyocyte differentiation process, we conducted an analysis of single-cell RNA sequencing data obtained from the reprogramming of two human induced pluripotent stem cell (iPSC) lines into cardiomyocytes. The data were collected from 32,365 cells at 4 stages of this process. We successfully identified cardiomyocyte clusters and several other cell clusters with different molecular characteristics derived from iPSC and described the differentiation trajectory of cardiomyocytes during differentiation in vitro. Through differential gene analysis and SCENIC analysis, we identified several candidate genes including CREG and NR2F2 that play an important regulatory role in cardiomyocyte lineage commitment. This study provides the key differentiation trajectory of heart differentiation in vitro at single-cell resolution and reveals the molecular basis of heart development and differentiation of iPSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Lu Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Dandan Li
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, 518118, Guangdong, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
2
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
3
|
Creff J, Lamaa A, Benuzzi E, Balzan E, Pujol F, Draia-Nicolau T, Nougué M, Verdu L, Morfoisse F, Lacazette E, Valet P, Chaput B, Gross F, Gayon R, Bouillé P, Malloizel-Delaunay J, Bura-Rivière A, Prats AC, Garmy-Susini B. Apelin-VEGF-C mRNA delivery as therapeutic for the treatment of secondary lymphedema. EMBO Mol Med 2024; 16:386-415. [PMID: 38177539 PMCID: PMC10898257 DOI: 10.1038/s44321-023-00017-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Secondary lymphedema (LD) corresponds to a severe lymphatic dysfunction leading to the accumulation of fluid and fibrotic adipose tissue in a limb. Here, we identified apelin (APLN) as a powerful molecule for regenerating lymphatic function in LD. We identified the loss of APLN expression in the lymphedematous arm compared to the normal arm in patients. The role of APLN in LD was confirmed in APLN knockout mice, in which LD is increased and associated with fibrosis and dermal backflow. This was reversed by intradermal injection of APLN-lentivectors. Mechanistically, APLN stimulates lymphatic endothelial cell gene expression and induces the binding of E2F8 transcription factor to the promoter of CCBE1 that controls VEGF-C processing. In addition, APLN induces Akt and eNOS pathways to stimulate lymphatic collector pumping. Our results show that APLN represents a novel partner for VEGF-C to restore lymphatic function in both initial and collecting vessels. As LD appears after cancer treatment, we validated the APLN-VEGF-C combination using a novel class of nonintegrative RNA delivery LentiFlash® vector that will be evaluated for phase I/IIa clinical trial.
Collapse
Affiliation(s)
- Justine Creff
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Asalaa Lamaa
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Emeline Benuzzi
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Elisa Balzan
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Francoise Pujol
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | | | - Manon Nougué
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Lena Verdu
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Florent Morfoisse
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Eric Lacazette
- I2MC, Université de Toulouse, Inserm UMR 1297, UT3, Toulouse, France
| | - Philippe Valet
- Institut RESTORE, UMR 1301-INSERM, 5070-CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Benoit Chaput
- Department of Plastic Surgery, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Fabian Gross
- Biotherapy Module of Clinical Investigation Center (CIC 1436), University Hospital of Toulouse, 31059, Toulouse, France
| | | | | | | | - Alessandra Bura-Rivière
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | | |
Collapse
|
4
|
Wagner N, Wagner KD. Molecular Mechanisms of Cardiac Development and Disease. Int J Mol Sci 2023; 24:ijms24108784. [PMID: 37240127 DOI: 10.3390/ijms24108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
During development, the heart is the first organ to form and function [...].
Collapse
Affiliation(s)
- Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d'Azur, 06107 Nice, France
| | | |
Collapse
|
5
|
Knight-Schrijver VR, Davaapil H, Bayraktar S, Ross ADB, Kanemaru K, Cranley J, Dabrowska M, Patel M, Polanski K, He X, Vallier L, Teichmann S, Gambardella L, Sinha S. A single-cell comparison of adult and fetal human epicardium defines the age-associated changes in epicardial activity. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1215-1229. [PMID: 36938497 PMCID: PMC7614330 DOI: 10.1038/s44161-022-00183-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
Re-activating quiescent adult epicardium represents a potential therapeutic approach for human cardiac regeneration. However, the exact molecular differences between inactive adult and active fetal epicardium are not known. In this study, we combined fetal and adult human hearts using single-cell and single-nuclei RNA sequencing and compared epicardial cells from both stages. We found that a migratory fibroblast-like epicardial population only in the fetal heart and fetal epicardium expressed angiogenic gene programs, whereas the adult epicardium was solely mesothelial and immune responsive. Furthermore, we predicted that adult hearts may still receive fetal epicardial paracrine communication, including WNT signaling with endocardium, reinforcing the validity of regenerative strategies that administer or reactivate epicardial cells in situ. Finally, we explained graft efficacy of our human embryonic stem-cell-derived epicardium model by noting its similarity to human fetal epicardium. Overall, our study defines epicardial programs of regenerative angiogenesis absent in adult hearts, contextualizes animal studies and defines epicardial states required for effective human heart regeneration.
Collapse
Affiliation(s)
- Vincent R. Knight-Schrijver
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Semih Bayraktar
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Alexander D. B. Ross
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Monika Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Minal Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Xiaoling He
- John van Geest Centre for Brain Repair, Cambridge University, Cambridge, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité - Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Laure Gambardella
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- These authors jointly supervised this work: Laure Gambardella, Sanjay Sinha
| |
Collapse
|
6
|
Blei F. Update April 2022. Lymphat Res Biol 2022; 20:228-244. [PMID: 35467969 DOI: 10.1089/lrb.2022.29121.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|