1
|
Fakeri M, Shakoul F, Yaghoubi SM, Koulaeizadeh S, Haghi M. Comprehensive insights into circular RNAs, miRNAs, and lncRNAs as biomarkers in retinoblastoma. Ophthalmic Genet 2025; 46:122-132. [PMID: 39849678 DOI: 10.1080/13816810.2025.2456607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Retinoblastoma (RB) is a common and potentially lethal cancer that primarily affects young children worldwide, with survival rates significantly varying between high- and low-income countries. This review aims to identify essential diagnostic markers for early diagnosis by investigating the molecular pathways associated with RB. The prevalence of RB cases is notably concentrated in Asia and Africa, contributing to a global survival rate estimate of less than 30%. Current management strategies involve complex, individualized treatment plans that consider cultural nuances, genetic abnormalities, staging, and the availability of medical resources. Recent studies suggest that circular RNAs (circRNAs) may serve as predictive and diagnostic biomarkers in the etiology of RB. This review examines the roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circRNAs in RB, with the goal of improving survival rates, particularly in low- and middle-income countries. A deeper understanding of the molecular pathways of RB may facilitate the development of personalized treatment plans and targeted therapies. Elevated expression of circRNAs has been observed in most patient cases, and studies indicate that reducing specific circRNA production can inhibit tumor cell development and progression. Investigating the roles and mechanisms of circular RNAs in RB holds promise for future treatment approaches.
Collapse
Affiliation(s)
- Mahsa Fakeri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Shakoul
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shabnam Koulaeizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Zamani Sani M, Mirzaei M, Mota A, Mohammadian J, Aboutalebi Vand Beilankouhi E, Rahmati M. MicroRNAs' Significance in Retinoblastoma Diagnosis and Treatment: The Little Heroes. Biochem Genet 2025; 63:1176-1197. [PMID: 39862293 DOI: 10.1007/s10528-024-10976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/09/2024] [Indexed: 01/27/2025]
Abstract
One in 16, 000 live births is affected by the retinal tumor RB (retinoblastoma), which is frequently found in a child's early years. Both of the RB1 alleles that have been locally mutated in the affected retina are present in 60 percent of cases. Retinoblastoma (RB) can be detected using a variety of techniques, including imaging of the brain and orbits, eye examinations under anesthesia (EUAs), and the discovery of cell-free tumor DNA in samples of aqueous humor or plasma. In addition to the conventional surgical, chemotherapy, and radiotherapy approaches to treating retinoblastoma, new approaches have also been developed. Oncogenes, genes of tumor suppressors, and other molecular elements involved in cell growth and division interact complexly during the pathogenesis of retinoblastoma. The development of new therapies depends on comprehending the function of these molecular components. As a small class of non-coding RNAs capable of altering gene expression, microRNAs (miRNA) are understood to represent potential targets for the treatment of cancer. This study aimed to describe the changes in microRNA expression in some types of cancer, with a particular focus on retinoblastoma.
Collapse
Affiliation(s)
- Maryam Zamani Sani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mirzaei
- Department of Ophthalmology, Nikoukari Eye Hospital, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Rahmati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Attem J, Vemuganti GK. The Role of Small Extracellular Vesicles in Retinoblastoma Development and Progression. Curr Eye Res 2025:1-15. [PMID: 39905667 DOI: 10.1080/02713683.2025.2457102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
A growing body of research on extracellular vesicles (EVs) in cancer has revealed their novel and crucial activities in the progression of tumors while also paving the way for potential therapeutic interventions. It is now known that EVs are natural delivery vehicles for particular payloads of source cells, enabling them to influence diverse functions of cells both in healthy and malignant cells. In this review, we comprehensively summarize mechanistic insights into sEV roles in RB, the most frequent intraocular malignancy that affects the retina of young children. We also explore the therapeutic potential of sEVs as an emerging area as biomarkers and vehicles for targeted therapy. Additionally, we address the potential challenges and limitations of translating sEVs-based technologies into clinical practice.
Collapse
Affiliation(s)
- Jyothi Attem
- School of Medical Sciences, Science Complex, University of Hyderabad, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, Science Complex, University of Hyderabad, Hyderabad, India
| |
Collapse
|
4
|
Muniyandi A, Jensen NR, Devanathan N, Dimaras H, Corson TW. The Potential of Aqueous Humor Sampling in Diagnosis, Prognosis, and Treatment of Retinoblastoma. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 38180770 PMCID: PMC10774694 DOI: 10.1167/iovs.65.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Retinoblastoma (RB) is a rare malignant tumor that arises in the developing retina in one or both eyes of children. Pathogenic variants of the RB1 tumor suppressor gene drive the majority of germline and sporadic RB tumors. Considering the risk of tumor spread, the biopsy of RB tumor tissue is contraindicated. Advancement of chemotherapy has led to preservation of more eye globes. However, this has reduced access to tumor material from enucleation specimens. Recently, liquid biopsy of aqueous humor (AH) has advanced the RB tumor- or eye-specific genetic analysis. In particular, nucleic acid analysis of AH demonstrates the genomic copy number profiles and RB1 pathogenic variants akin to that of enucleated RB eye tissue. This advance reduces the previous limitation that genetic assessment of the primary tumor could be done only after enucleation of the eye. Additionally, nucleic acid evaluation of AH allows the exploration of the genomic landscape of RB tumors at diagnosis and during and after treatment. This review explores how AH sampling and AH nucleic acid analysis in RB patients assist in diagnosis, prognosis, and comprehending the pathophysiology of RB, which will ultimately benefit individualized treatment decisions to carefully manage this ocular cancer in children.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Nathan R. Jensen
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Ophthalmology, University of Utah, Salt Lake City, Utah, United States
| | - Nirupama Devanathan
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Helen Dimaras
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario
- Division of Clinical Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Timothy W. Corson
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Pathania AS. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel) 2023; 15:2833. [PMID: 37345170 DOI: 10.3390/cancers15102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Long non-coding RNAs involved in retinoblastoma. J Cancer Res Clin Oncol 2023; 149:401-421. [PMID: 36305946 DOI: 10.1007/s00432-022-04398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Retinoblastoma (RB) is the most common childhood tumor that can occur in the retina and develop in a sporadic or heritable form. Although various traditional treatment options have been used for patients with RB, identifying novel strategies for childhood cancers is necessary. MATERIAL AND METHODS Recently, molecular-based targeted therapies have opened a greater therapeutic window for RB. Long non-coding RNAs (lncRNAs) presented a potential role as a biomarker for the detection of RB in various stages. CONCLUSION LncRNAs by targeting several miRNA/transcription factors play critical roles in the stimulation or suppression of RB. In this review, we summarized recent progress on the functions of tumor suppressors or oncogenes lncRNAs in RB.
Collapse
|
7
|
Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol 2022; 12:963780. [PMID: 36408154 PMCID: PMC9670800 DOI: 10.3389/fonc.2022.963780] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma (Rb), the most frequent malignant intraocular tumor in childhood, is caused by mutations in the retinoblastoma gene (RB1) situated on chromosome 13q14.2. The incidence of retinoblastoma is approximately 1 in 17,000 live births with approximately 8,000 new cases diagnosed each year worldwide. Rb is the prototypical hereditary cancer in humans. Autosomal dominant inheritance is seen in 30-40% of cases whereas the non-inherited sporadic type accounts for the remaining 60-70%. Rb arises due to inactivation of both alleles of the Rb tumor suppressor gene, which results in a defective Rb protein (pRB) with subsequent cell cycle impairment and uncontrolled cell proliferation. Patients with Rb have survival rates higher than 95-98% in industrialized countries but mortality remains high in developing countries. For example, the mortality rate in Africa is 70%. In all cases of intraocular and extraocular retinoblastoma, there is a need for new therapies that are more effective and carry less risk of toxicity. The Bruckner test is a practical and easy test for the detection of Rb, this test consists of assessing the fundus reflex through the pupil (red reflex) in both eyes simultaneously with a bright coaxial light produced with the direct ophthalmoscope. Rb can be detected by the Bruckner test showing a pupil that shines white or “Leukocoria”. Although the diagnosis of Rb remains essentially clinical, the newly identified biomarkers could contribute to early molecular detection, timely detection of micrometastases and establish new therapeutic options for Rb.
Collapse
Affiliation(s)
- Claudia Carolina Cruz-Gálvez
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan Carlos Ordaz-Favila
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
| | | | | | - Vanessa Bosch-Canto
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
- *Correspondence: Vanessa Bosch-Canto,
| |
Collapse
|
8
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|