1
|
Song HM, Li ZW, Huang Q, Wu CG, Li MH, Shen JK. A diagnostic signatures for intervertebral disc degeneration using TNFAIP6 and COL6A2 based on single-cell RNA-seq and bulk RNA-seq analyses. Ann Med 2025; 57:2443568. [PMID: 39704340 DOI: 10.1080/07853890.2024.2443568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/01/2024] [Accepted: 09/17/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Intervertebral disc degeneration (IVDD) is a prevalent degenerative condition associated with a high incidence rate of low back pain and disability. This study aimed to identify potential biomarkers and signaling pathways associated with IVDD. METHODS Biomarkers were discerned through bulk-RNA and single-cell RNA sequencing (scRNA-Seq) investigations of IVDD cases from the Gene Expression Omnibus (GEO) database. Following this, two central genes were identified. Furthermore, gene set enrichment analysis (GSEA) and receiver operating characteristic (ROC) curve analysis were conducted. The transcriptional factor (TF) derived from nucleus pulposus (NP) cells was examined through the DoRothEA R package. RT-qPCR and IHC techniques were employed to confirm the expression of the two hub genes and their associated genes in tissue samples. RESULTS The proteins Tumor necrosis factor-inducible gene 6 protein (TNFAIP6) and collagen VI-α2 (COL6A2) were frequently analyzed using a combination of DEGs from datasets GSE70362, GSE124272, and scRNA-seq. Examination of gene expression across multiple datasets indicated significant differences in TNFAIP6 and COL6A2 levels in IVDD compared to control or normal groups (p < 0.05). These two central genes demonstrated strong diagnostic utility in the training cohort and reliable predictive value in the validation datasets. Our study verified the potential role of ZEB2 as a TF in regulating two key genes associated with IVDD. Furthermore, qPCR and IHC confirmed elevated expression levels of the hub genes and transcription factor. CONCLUSION We identified biomarkers, specifically TNFAIP6 and COL6A2, that have the potential to predict disease activity and aid in the diagnosis of IVDD.
Collapse
Affiliation(s)
- Hong-Mei Song
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo-Wei Li
- Department of Urological Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Huang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Gen Wu
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Hua Li
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Zhang L, Lv Y, Ma M, Lv J, Chen J, Lei S, Man Y, Xing G, Wang Y. The identification and validation of histone acetylation-related biomarkers in depression disorder based on bioinformatics and machine learning approaches. Front Neurosci 2025; 19:1479616. [PMID: 40370665 PMCID: PMC12076168 DOI: 10.3389/fnins.2025.1479616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Some studies indicated that histone modification may be involved in depression disorder (DD). The maintenance of the histone acetylation state is the work of histone acetyltransferase (HAT) and histone deacetylase (HDAC), which is thought to be a potential diagnostic biomarker of depression. However, it is still unknown how histone acetylation-related genes (HAC-RGs) contribute to the onset and progression of DD. Methods GSE76826 and GSE98793were obtained from the Gene Expression Omnibus (GEO) database, HAC-RGs were acquired from the GeneCards database. Initially, the differentially expressed genes (DEGs) in GSE76826 were investigated. We used weighted gene co-expression network analysis (WGCNA) to screen key module genes. Candidate genes were selected by intersecting DEGs, key module genes, and HAC-RGs, followed by functional analysis. Two machine learning algorithms were used to identify hub genes, which were used for drug prediction, immunological infiltration studies, nomogram construction, and regulatory network building. The expression levels were verified using the GSE76826 and GSE98793 datasets. Hub gene expression levels in the clinical samples were verified using reverse transcription quantitative PCR (RT-qPCR). Results The 23 candidate genes were obtained by intersecting 2,316 DEGs, 1,010 HAC-RGs and 2,617 key module genes. Three hub genes (JDP2, ALOX5, and KPNB1) were gained by two machine learning algorithms. The nomogram constructed based on these three hub genes showed high predictive accuracy. Additionally, the three hub genes were enriched in the kegg_ribosome. The 9 different immune cells were identified in GSE76826, which were associated with three hub genes. A hub gene-drug network (98 nodes, 106 edges) and an lncRNA-miRNA-mRNA network (56 nodes, 87 edges), were built using the database. The expression level verification indicated that, with the exception of the KPNB1 gene, the DD group had higher levels of JDP2 and ALOX5 and that the expression patterns in GSE76826 and GSE98793 were consistent, with RT-qPCR confirming higher ALOX5 and JDP2 expression in DD samples. Conclusion This study identified three hub genes (JDP2, ALOX5, and KPNB1) associated with histone acetylation, offering new insight into the diagnosis and treatment of DD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, Anhui No. 2 Provincial People’s Hospital, Hefei, China
| | - YuJing Lv
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Mengqing Ma
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Jile Lv
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Jie Chen
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Shang Lei
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Yi Man
- Department of Oncology, Anhui Jimin Cancer Hospital, Hefei, China
| | - Guimei Xing
- Department of Education, Anhui No. 2 Provincial People’s Hospital, Hefei, China
| | - Yu Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Lin L, Li D, Cai G, Zheng G, Huang D, Liu H, Lin S, Zhao F. Exploring the molecular mechanisms underlying intervertebral disc degeneration by analysing multiple datasets. Sci Rep 2025; 15:14748. [PMID: 40289127 PMCID: PMC12034803 DOI: 10.1038/s41598-025-98070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
The purpose of this study was to explore the genetic characteristics and immune cell infiltration related to intervertebral disc degeneration through multidataset analysis, predict potential therapeutic drugs, and provide a theoretical basis for clinical treatment. The gene expression profile data of the GSE70362, GSE186542, and GSE245147 datasets were downloaded from the Gene Expression Omnibus (GEO) database, and the hub genes were identified through differentially expressed gene analysis, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) functional annotation and Mendelian randomization analysis were performed. Hub genes and immune cells were identified. Infiltration status was determined through GSEA and GSVA to clarify the specific signalling pathways associated with key genes and explore the potential molecular mechanisms by which key genes affect disease progression. The key genes were reversely predicted using miRNA grid construction and transcription factor regulation, and genes related to disease regulation were obtained from the GeneCards database. Finally, the differentially expressed genes were used for drug prediction through the Connectivity Map database to identify potential drugs for the treatment of intervertebral disc degeneration. The feasibility of the predicted drugs was tested by molecular docking technology. Real-time quantitative PCR was used to confirm the expression of key genes in the tissue samples.A total of 126 differentially expressed genes were identified in the GEO database, and 4 differentially expressed hub genes (COL6A2, DCXR, GLRX, and PDGFRB) were identified through bioinformatics methods. Immune infiltration analysis revealed that NK cells, macrophages, and eosinophils were activated during IVDD, whereas mast cells and T cells were suppressed. GO and KEGG analyses revealed that key genes are involved in the development of this disease through signalling pathways such as the glycolysis pathway, the oxidative phosphorylation pathway, the cholesterol regulatory pathway, and the haem metabolism pathway. Analysis of the constructed miRNA grid revealed that key genes are jointly regulated by multiple transcription factors, among which the most important motif is cisbp_M5578. Disease regulation-related genes were obtained through the GeneCards database, analysis of the correlation with key genes was performed, and the expression levels of the two mRNA and miRNA were significantly correlated. Finally, drug prediction performed through the Connectivity Map database revealed that drugs such as Abt-751, LY-2183240, podophyllotoxin, and vindesine can alleviate or even reverse the disease state. Finally, we collected 10 IVDD and 10 healthy disc tissue samples, and the RT‒qPCR results were consistent with the bioinformatics results. We identified COL6A2, DCXR, GLRX, and PDGFRB as key genes involved in IVDD. In addition, drugs such as Abt-751 are expected to control and reverse the progression of the disease. In the future, these key genes and predicted drugs may provide new directions for further mechanistic studies as well as new therapies for IVDD patients.
Collapse
Affiliation(s)
- Longquan Lin
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China.
| | - Da Li
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Gangfeng Cai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fujian, 350000, China.
| | - Gengyang Zheng
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Dianfeng Huang
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Hua Liu
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Shunxin Lin
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Feng Zhao
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| |
Collapse
|
4
|
Fan C, Xu W, Li X, Wang J, He W, Shen M, Hua D, Zhang Y, Gu Y, Wu X, Mao H. Integrated bulk and single-cell RNA sequencing to identify potential biomarkers in intervertebral disc degeneration. Eur J Med Res 2025; 30:102. [PMID: 39953636 PMCID: PMC11827443 DOI: 10.1186/s40001-025-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Nucleus pulposus (NP) deterioration plays a significant role in the development of intervertebral disc degeneration (IVDD) and low back pain (LBP). This paper aims to identify potential genes within degenerated NP tissue and elucidate the pathogenesis of IVDD through bioinformatics analysis. METHODS We conducted a transcriptomic analysis of patient's degenerative NP tissue employing advanced bioinformatics techniques and machine learning algorithms. Utilizing hdWGCNA, we successfully acquired WGCNA single-cell sequencing data and pinpointed crucial genes implicated in IVDD. Subsequently, we employed the Monocle3 package to perform pseudotime sequence analysis, enabling the identification of genes associated with the differentiation and developmental processes of NP tissue. Following this, normalized and logarithmically transformed the bulk sequencing data. Subsequently, we conducted preliminary screening using single-factor logistic regression on the genes derived from single-cell sequencing. Next, we applied two machine learning techniques, namely, SVM-RFE and random forest, to discern pivotal pathogenic genes. Finally, we used validation sets to verify trends and qualitativeness and performed in vitro and in vivo validation analyses of normal and degenerative NP tissues. RESULTS 909 genes associated with IVDD were identified through hdWGCNA, while pseudotime sequence analysis uncovered 1964 genes related to differentiation and developmental processes. The two had 208 genes in common. Subsequently, we conducted an initial screening of single-cell genes by integrating the bulk database with single logistic regression. Next, we utilized machine learning techniques to identify the IVDD genes CDH, DPH5, and SELENOF. PCR analysis confirmed that the expression of CDH and DPH5 in degraded nucleus pulposus cells (NPCs) was decreased by 31% and 28% in vivo, and 36% and 29% in vitro, respectively, while SELENOF showed the opposite trend. Furthermore, IVDD was validated through imaging and histological staining. CONCLUSION As pathogenic genes in IVDD, our findings indicate that CTH, DPH5, and SELENOF are important players and might be promising therapeutic targets for IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuefeng Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wei He
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Hua
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ye Gu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
- Department of Orthopaedic Surgery, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Suzhou, Jiangsu, China.
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
5
|
Baek IC, Sim SY, Suh BK, Kim TG, Cho WK. Assessment of XCI skewing and demonstration of XCI escape region based on single-cell RNA sequencing: comparison between female Grave's disease and control. BMC Mol Cell Biol 2025; 26:8. [PMID: 39891056 PMCID: PMC11786500 DOI: 10.1186/s12860-025-00533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The reactivation and loss of mosaicism hypothesis due to X chromosome inactivation (XCI) skewing and escape could influence gender differences in autoimmune diseases. XCI selectively inactivates one of the two X chromosomes in females. METHODS To estimate XCI skewing and the occurrence of XCI escape, we conducted a normal female (NF) without a history of autoimmune thyroid disease (AITD) and a patient with Grave's disease (GD) based on a thyroid diagnosis. After single-cell RNA sequencing, heterozygous variants were converted and transformed. XCI skewing was calculated using the formula and the skewing degree was defined. NF/GD genes were compared using correction methods. Positions are heterozygous within a single cell as indicated by a unique barcode. RESULTS XCI skewing showed 45.8%/48.9% relatively random, 29.4%/27.0% skewing, 24.6%/23.7% severe skewing, and 0.2%/0.4% extreme severe skewing. 24.8%/24.1% in NF/GD exhibited severe skewing or higher. A total of 13 genes were significantly associated with XCI skewing ratios in NF/GD cells. In total, 371/250 nucleotide positions with only one barcode (representing a unique cell) were identified for XCI escape. A total of 143/52 nucleotide positions spanned 20/6 genes, and 12/1 genes were identified as XCI escapes. CONCLUSIONS These results could aid in understanding the immunogenetics of gender differences in various autoimmune disease pathophysiologies.
Collapse
Affiliation(s)
- In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Yeun Sim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Kyu Suh
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Kyoung Cho
- Department of Pediatrics, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Seoul, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
6
|
Yu XJ, Zou P, Li TQ, Bai XF, Wang SX, Guan JB, Zhao YT, Li MW, Wang X, Wang YG, Hao DJ. Deciphering SPP1-related macrophage signaling in the pathogenesis of intervertebral disc degeneration. Cell Biol Toxicol 2025; 41:33. [PMID: 39825191 PMCID: PMC11748470 DOI: 10.1007/s10565-024-09948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/20/2024] [Indexed: 01/20/2025]
Abstract
This study delved into the molecular mechanisms underlying mechanical stress-induced intervertebral disc degeneration (msi-IDD) through single-cell and high-throughput transcriptome sequencing in mouse models and patient samples. Results exhibited an upsurge in macrophage presence in msi-IDD intervertebral disc (IVD) tissues, with secreted phosphoprotein 1 (SPP1) identified as a pivotal driver exacerbating degeneration via the protein kinase RNA-like endoplasmic reticulum kinase/ activating transcription factor 4/ interleukin-10 (PERK/ATF4/IL-10) signaling axis. Inhibition of SPP1 demonstrated promising outcomes in mitigating msi-IDD progression in both in vitro and in vivo models. These findings underscore the therapeutic promise associated with the modulation of the PERK signaling pathway in IDD, shedding light on the pathogenesis of msi-IDD and proposing a promising avenue for intervention strategies.
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Tian-Qi Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Jian-Bin Guan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Meng-Wei Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaodong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Liu F, Zhong M, Yang L, Song C, Chen C, Xu Z, Zhang C, Li Z, Wu X, Jiang C, Chen F, Yan Q. Experimental confirmation and bioinformatics reveal biomarkers of immune system infiltration and hypertrophy ligamentum flavum. JOR Spine 2024; 7:e1354. [PMID: 39071860 PMCID: PMC11272949 DOI: 10.1002/jsp2.1354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024] Open
Abstract
Background Hypertrophy ligamentum flavum is a prevalent chronic spinal condition that affects middle-aged and older adults. However, the molecular pathways behind this disease are not well comprehended. Objective The objective of this work is to implement bioinformatics techniques in order to identify crucial biological markers and immune infiltration that are linked to hypertrophy ligamentum flavum. Further, the study aims to experimentally confirm the molecular mechanisms that underlie the hypertrophy ligamentum flavum. Methods The corresponding gene expression profiles (GSE113212) were selected from a comprehensive gene expression database. The gene dataset for hypertrophy ligamentum flavum was acquired from GeneCards. A network of interactions between proteins was created, and an analysis of functional enrichment was conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. An study of hub genes was performed to evaluate the infiltration of immune cells in patient samples compared to tissues from the control group. Finally, samples of the ligamentum flavum were taken with the purpose of validating the expression of important genes in a clinical setting. Results Overall, 27 hub genes that were differently expressed were found through molecular biology. The hub genes were found to be enriched in immune response, chemokine-mediated signaling pathways, inflammation, ossification, and fibrosis processes, as demonstrated by GO and KEGG studies. The main signaling pathways involved include the TNF signaling pathway, cytokine-cytokine receptor interaction, and TGF-β signaling pathway. An examination of immunocell infiltration showed notable disparities in B cells (naïve and memory) and activated T cells (CD4 memory) between patients with hypertrophic ligamentum flavum and the control group of healthy individuals. The in vitro validation revealed markedly elevated levels of ossification and fibrosis-related components in the hypertrophy ligamentum flavum group, as compared to the normal group. Conclusion The TGF-β signaling pathway, TNF signaling pathway, and related hub genes play crucial roles in the progression of ligamentum flavum hypertrophic. Our study may guide future research on fibrosis of the ligamentum flavum.
Collapse
Affiliation(s)
- Fei Liu
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
- Department of OrthopedicsThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Min Zhong
- Department of ElectrocardiographyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Lei Yang
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Chao Song
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
- Department of OrthopedicsThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Chaoqi Chen
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Zhiwei Xu
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Chi Zhang
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Zhifa Li
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Xiaofei Wu
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Chen Jiang
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Feng Chen
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Qian Yan
- Department of OrthopedicsRuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningChina
| |
Collapse
|
8
|
Liu M, Li H, Huo Z, Chen H, Kang X, Xu B. Bioinformatics Research and qRT-PCR Verify Hub Genes and a Transcription Factor-MicroRNA Feedback Network in Intervertebral Disc Degeneration. Appl Biochem Biotechnol 2024; 196:3184-3198. [PMID: 37632659 DOI: 10.1007/s12010-023-04699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The present study explores the potentials of bioinformatics analysis to identify hub genes linked to intervertebral disc degeneration (IDD) and explored the potential molecular mechanism of transcription factor-microRNA regulatory network. Furthermore, the hub genes were identified through quantitative reverse transcriptase PCR (qRT-PCR). GEO database expression profile datasets for candidate genes (GSE124272) were downloaded. Genes that were differentially expressed (DEGs) were detected utilizing limma technique in the R programming language. Search Tool for the Retrieval of Interacting Genes/Proteins and NetworkAnalyst software identified hub genes. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis as well as Gene Ontology annotation of the DEGs were performed using Metascape. Using Bioinformatics data from the TRRUST, StarBase, and TransmiR databases, a TF-miRNA-hub genes network was constructed. qRT-PCR was utilized to confirm the result. As compared to healthy persons, 521 DEGs, comprising 203 down-regulated and 318 up-regulated genes, as well as 7 core genes, were found in people with IDD. Analysis revealed that all seven essential genes were under-expressed. qRT-PCR further confirmed the low expression of these seven important genes. Based on the TRRUST database, 16 TFs that could target five junction genes were then predicted. According to the StarBase database, four miRNAs were linked to crucial genes, while the TransmiR database predicted regulatory connections between four miRNAs and five TFs. The expression of the TP53-(hsa-miR-183-5p)-CCNB1 TF-miRNA-mRNA interaction network was discovered to be correlated with IDD. Throughout this investigation, a network of TF-miRNA-mRNA connections was built for investigation of the probable molecular mechanisms responsible for IDD. The identification of hub genes associated with IDD may reveal promising IDD treatment strategies.
Collapse
Affiliation(s)
- Mingli Liu
- Graduate School, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300211, China
| | - Hao Li
- Graduate School, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300211, China
| | - Zhenxin Huo
- Graduate School, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300211, China
| | - Houcong Chen
- Graduate School, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300211, China
| | - Xinjian Kang
- Graduate School, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300211, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China.
| |
Collapse
|
9
|
Zhang M, Xu Y, Zhu G, Zeng Q, Gao R, Qiu J, Su W, Wang R. Human C15orf39 Inhibits Inflammatory Response via PRMT2 in Human Microglial HMC3 Cell Line. Int J Mol Sci 2024; 25:6025. [PMID: 38892217 PMCID: PMC11173073 DOI: 10.3390/ijms25116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Microglia-mediated inflammatory response is one key cause of many central nervous system diseases, like Alzheimer's disease. We hypothesized that a novel C15orf39 (MAPK1 substrate) plays a critical role in the microglial inflammatory response. To confirm this hypothesis, we used lipopolysaccharide (LPS)-and interferon-gamma (IFN-γ)-induced human microglia HMC3 cells as a representative indicator of the microglial in vitro inflammatory response. We found that C15orf39 was down-regulated when interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) expression increased in LPS/IFN-γ-stimulated HMC3 cells. Once C15orf39 was overexpressed, IL-6 and TNFα expression were reduced in LPS/IFN-γ-stimulated HMC3 cells. In contrast, C15orf39 knockdown promoted IL-6 and TNFα expression in LPS/IFN-γ-stimulated HMC3 cells. These results suggest that C15orf39 is a suppressive factor in the microglial inflammatory response. Mechanistically, C15orf39 interacts with the cytoplasmic protein arginine methyltransferase 2 (PRMT2). Thus, we termed C15orf39 a PRMT2 interaction protein (PRMT2 IP). Furthermore, the interaction of C15orf39 and PRMT2 suppressed the activation of NF-κB signaling via the PRMT2-IκBα signaling axis, which then led to a reduction in transcription of the inflammatory factors IL6 and TNF-α. Under inflammatory conditions, NF-κBp65 was found to be activated and to suppress C15orf39 promoter activation, after which it canceled the suppressive effect of the C15orf39-PRMT2-IκBα signaling axis on IL-6 and TNFα transcriptional expression. In conclusion, our findings demonstrate that in a steady condition, the interaction of C15orf39 and PRMT2 stabilizes IκBα to inhibit IL-6 and TNFα expression by suppressing NF-κB signaling, which reversely suppresses C15orf39 transcription to enhance IL-6 and TNFα expression in the microglial inflammatory condition. Our study provides a clue as to the role of C15orf39 in microglia-mediated inflammation, suggesting the potential therapeutic efficacy of C15orf39 in some central nervous system diseases.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (M.Z.); (Y.X.); (G.Z.); (Q.Z.); (R.G.); (J.Q.)
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Song C, Zhou D, Cheng K, Liu F, Cai W, Mei Y, Chen J, Huang C, Liu Z. Bioinformatics-based discovery of intervertebral disc degeneration biomarkers and immune-inflammatory infiltrates. JOR Spine 2024; 7:e1311. [PMID: 38222811 PMCID: PMC10782055 DOI: 10.1002/jsp2.1311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a common chronic disease in orthopedics, and its molecular mechanisms are still not well explained. Aim This study's objective was to bioinformatics-based discovery of IVDD biomarkers and immune-inflammatory infiltrates. Materials and Methods The IVDD illness gene collection was gathered from GeneCards, DisGeNet, and gene expression profiles were chosen from the extensive Gene Expression Omnibus database (GSE124272, GSE150408, and GSE153761). The STRING database was used to create a network of protein-protein interactions, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases were used for functional enrichment analysis. Using hub genes, the immune cell infiltration between IVDD patient samples and control tissues was examined. Finally, quantitative polymerase chain reaction and Western blot experiments were used to verify the expression of hub genes. Results A total of 27 differentially expressed hub genes were identified by bioinformatics. According to GO and KEGG analyses, hub genes were prominent in immunological responses, chemokine-mediated signaling pathways, and inflammatory responses, with the key signaling pathways engaged in cellular senescence, apoptosis, Th1 and Th2 cell differentiation, and Th17 cell differentiation. Immune cell infiltration research revealed that T cells, lymphocytes, B cells, and NK cells were decreased in IVDD patients while monocytes, neutrophils, and CD8 T cells were increased. The expression levels of the senescence hub genes SP1, VEGFA, IL-6, and the apoptosis key gene CASP3 were considerably greater in the IVDD model group than in the control group, according to in vitro validation. Conclusion In conclusion, the cellular senescence signaling pathway, the apoptosis signaling pathway, and associated hub genes play significant roles in the development and progression of IVDD, this finding may help direct future research on the senescence signaling route in IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
- RuiKang Hospital affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Yongliang Mei
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Jingwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Chenyi Huang
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone‐setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and TreatmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouSichuanChina
- Luzhou Longmatan District People's HospitalLuzhouSichuanChina
| |
Collapse
|
11
|
Zhao Y, Mu Y, Zou Y, He Z, Lu T, Wang X, Li W, Gao B. Conjoint research of WGCNA, single-cell transcriptome and structural biology reveals the potential targets of IDD development and treatment and JAK3 involvement. Aging (Albany NY) 2023; 15:14764-14790. [PMID: 38095643 PMCID: PMC10781489 DOI: 10.18632/aging.205289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES This study conducted integrated analysis of bulk RNA sequencing, single-cell RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA), to comprehensively decode the most essential genes of intervertebral disc degeneration (IDD); then mainly focused on the JAK3 macromolecule to identify natural compounds to provide more candidate drug options in alleviating IDD. METHODS In the first part, we performed single-cell transcriptome analysis and WGCNA workflow to delineate the most pivotal genes of IDD. Then series of structural biology approaches and high-throughput virtual screening techniques were performed to discover potential compounds targeting JAK-STAT signaling pathway, such as Libdock, ADMET, precise molecular docking algorithm and in-vivo drug stability assessment. RESULTS Totally 4 hub genes were determined in the development of IDD, namely VEGFA, MMP3, TNFSF11, and TIMP3, respectively. Then, 3 novel natural materials, ZINC000014952116, ZINC000003938642 and ZINC000072131515, were determined as potential compounds, with less toxicities and moderate ADME characteristics. In-vivo drug stability assessment suggested that these drugs could interact with JAK3, and their ligand-JAK3 complexes maintained the homeostasis in-vivo, which acted as regulatory role to JAK3 protein. Among them, ZINC000072131515, also known as Menaquinone, demonstrated significant protective roles to alleviate the progression of IDD in vitro, which proved the nutritional therapy in alleviating IDD. CONCLUSIONS This study reported the essential genes in the development of IDD, and also the roles of Menaquinone to ameliorate IDD through inhibiting JAK3 protein. This study also provided more options and resources on JAK3 targeted screening, which may further expand the drug resources in the pharmaceutical market.
Collapse
Affiliation(s)
- Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Yujia Zou
- Department of Cardiology, Xinhua Hospital affiliated to School of Medicine, Shanghai Jiaotong University, China
| | - Zhijian He
- Department of Sports Teaching and Research, Lanzhou University, Lanzhou, China
| | - Tianxing Lu
- Zonglian College, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinhui Wang
- Department of Oncology, The Fifth Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
12
|
Mesenchymal Stem Cells May Alleviate the Intervertebral Disc Degeneration by Reducing the Oxidative Stress in Nucleus Pulposus Cells. Stem Cells Int 2022; 2022:6082377. [PMID: 36238530 PMCID: PMC9551678 DOI: 10.1155/2022/6082377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative NPCs cocultured with mesenchymal stem cells (MSCs). Methods A series of bioinformatic methods were used to calculate the oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results There was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0.05). Forty-one OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network, which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship between the oxidative stress score and autophagy score was observed (p < 0.05), and 125 significantly related gene pairs were obtained (|r| > 0.90, p < 0.05). Conclusion Stem cell therapy might repair the degenerative IVD via reducing the oxidative stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.
Collapse
|
13
|
Significance of Immune-Related Genes in the Diagnosis and Classification of Intervertebral Disc Degeneration. J Immunol Res 2022; 2022:2616260. [PMID: 36081453 PMCID: PMC9448583 DOI: 10.1155/2022/2616260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background With the extensive development of intervertebral disc degeneration (IDD) research, IDD has been found to be a complex disease associated with immune-related gene (IRGs) changes. Nonetheless, the roles of IRGs in IDD are unclear. Methods In our study, 11 IRGs were chosen using differential analysis between nondisc degeneration and degenerative patients from the GEO database. Then, we utilized a random forest (RF) model to screen six candidate IRGs to predict the risk of IDD. A nomogram was developed on the basis of six candidate IRGs, and DCA showed that patients could benefit from the nomogram. Based on the selected significant IRGs, a consensus clustering approach was used to differentiate disc degeneration patients into two immune patterns (immune cluster A and B). The PCA algorithm was constructed to compute immune scores for every sample, to quantify immune patterns. The immune scores of immune cluster B patients were higher than those of immune cluster A. Results Through differential expression analysis between healthy and IDD samples, 11 significant IRGs (CTSS, S100Z, STAT3, KLRK1, FPR1, C5AR2, RLN1, IFGR2, IL2RB, IL17RA, and IL6R) were recognized through significant IRGs. The “Reverse Cumulative Distribution of Residual” and “Boxplots of Residual” indicate that the RF model has minimal residuals. The majority of samples in the model have relatively small residuals, demonstrating that the model is better. Besides, the nomogram model was constructed based on importance and the IRGs with importance scores greater than 2 (FPR1, RLN1, S100Z, IFNGR2, KLRK1, and CTSS). The nomogram model revealed that decision-making based on an established model might be beneficial for IDD patients, and the predictive power of the nomogram model was significant. In addition, we identified two different immune cluster patterns (immune cluster A and immune cluster B) based on the 11 IRGs. We found that immune cluster A had significantly higher levels of MDSC, neutrophil, plasmacytoid dendritic cell, and type 17 T helper cell expression than immune cluster B. And we calculated the score for each sample to quantify the gene patterns. The patients in immune cluster B or gene cluster B had higher immune scores than those in immune cluster A or gene cluster A. Conclusion In conclusion, IRGs play an extremely significant role in the occurrence of IDD. Our study of immune patterns may guide the strategies of prevention and treatment for IDD in the future.
Collapse
|