1
|
Ji W, Zheng B, Zhang A. Research progress of the relationship between phosphoprotein phosphatases (PPPs) and neurodevelopmental disorders. Clin Genet 2024; 106:679-692. [PMID: 39300798 DOI: 10.1111/cge.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Reversible protein phosphorylation is a ubiquitous phenomenon essential for eukaryotic cellular processes. Recent advancements in research about neurodevelopmental disorders have prompted investigations into the intricate relationship between protein phosphatases, particularly phosphoprotein phosphatases (PPPs), and neurodevelopment. Notably, variants in 10 coding genes spanning four PPP family members have been implicated in neurodevelopmental disorders. Here, we provide a comprehensive overview of the clinical phenotypes, genotypes, and pathogenic mechanisms observed in affected patients. Our analysis reveals challenges in subsequent statistical analyses due to inconsistent clinical phenotypic descriptions and a lack of large multicenter studies, hampering analysis about genotype-phenotype correlations. The scarcity of follow-up data poses a significant obstacle to prognostic counseling for nearly all rare diseases. Presently, symptomatic treatment strategies are employed for patients with variants, as definitive cures remain elusive. Future research may explore protein phosphatase regulators as potential therapeutic targets. Furthermore, it is imperative not to overlook other members of the protein phosphatase family or coding genes with undiscovered variants. Insights gleaned from the temporal and spatial distribution of proteins, along with observations from animal model phenotypes, may provide valuable directions for uncovering novel pathogenic genes.
Collapse
Affiliation(s)
- Wenya Ji
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Ganga AK, Sweeney LK, Ramos AR, Bishop CS, Hamel V, Guichard P, Breslow DK. A disease-associated PPP2R3C-MAP3K1 phospho-regulatory module controls centrosome function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587836. [PMID: 38617270 PMCID: PMC11014585 DOI: 10.1101/2024.04.02.587836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Centrosomes have critical roles in microtubule organization and in cell signaling.1-8 However, the mechanisms that regulate centrosome function are not fully defined, and thus how defects in centrosomal regulation contribute to disease is incompletely understood. From functional genomic analyses, we find here that PPP2R3C, a PP2A phosphatase subunit, is a distal centriole protein and functional partner of centriolar proteins CEP350 and FOP. We further show that a key function of PPP2R3C is to counteract the kinase activity of MAP3K1. In support of this model, MAP3K1 knockout suppresses growth defects caused by PPP2R3C inactivation, and MAP3K1 and PPP2R3C have opposing effects on basal and microtubule stress-induced JNK signaling. Illustrating the importance of balanced MAP3K1 and PPP2R3C activities, acute overexpression of MAP3K1 severely inhibits centrosome function and triggers rapid centriole disintegration. Additionally, inactivating PPP2R3C mutations and activating MAP3K1 mutations both cause congenital syndromes characterized by gonadal dysgenesis.9-15 As a syndromic PPP2R3C variant is defective in centriolar localization and binding to centriolar protein FOP, we propose that imbalanced activity of this centrosomal kinase-phosphatase pair is the shared cause of these disorders. Thus, our findings reveal a new centrosomal phospho-regulatory module, shed light on disorders of gonadal development, and illustrate the power of systems genetics to identify previously unrecognized gene functions.
Collapse
Affiliation(s)
- Anil Kumar Ganga
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Lauren K. Sweeney
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Armando Rubio Ramos
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - Cassandra S. Bishop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Faculty of Sciences, Geneva, Switzerland
| | - David K. Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Zhang W, Mao J, Wang X, Zhao Z, Zhang X, Sun B, Cao Y, Nie M, Wu X. The genetic spectrum of a Chinese series of patients with 46, XY disorders of the sex development. Andrology 2024; 12:98-108. [PMID: 37147882 DOI: 10.1111/andr.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE The etiology of 46, XY disorders of sex development (46, XY DSD) is complex, and studies have shown that different series of patients with 46, XY DSD has different genetic spectrum. In this study, we aimed to investigate the underlying genetic etiology in a Chinese series of patients with 46, XY DSD by whole exome sequencing (WES). METHODS Seventy patients with 46, XY DSD were enrolled from the Peking Union Medical College Hospital (Beijing, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for WES to find the patients' rare variants (RVs) of genes related to 46, XY DSD. The clinical significance of the RVs was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS A total of 57 RVs from nine genes were identified in 56 patients with 46, XY DSD, which include 21 novel RVs and 36 recurrent RVs. Based on the American ACMG guidelines, 43 variants were classified as pathogenic(P) or likely pathogenic (LP) variants and 14 variants were defined as variants of uncertain significance (VUS). P or LP variants were identified in 64.3% (45/70) patients of the series. Thirty-nine, 14, and 4 RVs were involved in the process of androgen synthesis and action, testicular determination and developmental process, and syndromic 46, XY DSD, respectively. The top three genes most frequently affected to cause 46, XY DSD were AR, SRD5A2, and NR5A1. Seven patients were found harboring RVs of the 46, XY DSD pathogenic genes identified in recent years, namely DHX37 in four patients, MYRF in two patients, and PPP2R3C in one patient. CONCLUSION We identified 21 novel RVs of nine genes, which extended the genetic spectrum of 46, XY DSD pathogenic variants. Our study showed that 60% of the patients were caused by AR, SRD5A2 or NR5A1 P/LP variants. Therefore, polymerase chain reaction (PCR) amplification and Sanger sequencing of these three genes could be performed first to identify the pathogeny of the patients. For those patients whose pathogenic variants had not been found, whole-exome sequencing could be helpful in determining the etiology.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyuan Zhao
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxia Zhang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bang Sun
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaqing Cao
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Nie
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|