1
|
Broseghini E, Venturi F, Veronesi G, Scotti B, Migliori M, Marini D, Ricci C, Casadei R, Ferracin M, Dika E. Exploring the Common Mutational Landscape in Cutaneous Melanoma and Pancreatic Cancer. Pigment Cell Melanoma Res 2025; 38:e13210. [PMID: 39609109 DOI: 10.1111/pcmr.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024]
Abstract
Cutaneous melanoma (CM) and pancreatic cancer are aggressive tumors whose incidences are rapidly increasing in the last years. This review aims to provide a complete and update description about mutational landscape in CM and pancreatic cancer, focusing on similarities of these two apparently so different tumors in terms of site, type of cell involved, and embryonic origin. The familial forms of CM and pancreatic cancers are often characterized by a common mutated gene, namely CDKN2A. In fact, a germline mutation in CDKN2A gene can be responsible for the development of the familial atypical multiple mole and melanoma syndrome (FAMMM), which is characterized by melanomas and pancreatic cancer development. Sporadic melanoma and pancreatic cancer showed different key-driven genes. The open-access resource cBioPortal has been explored to deepen and investigate the common mutational landscape of these two tumors. We investigated the common mutated genes found in both melanoma and pancreatic cancer with a frequency of at least 5% of tested patients and copy number alterations with a frequency of at least of 3%. Data showed that 18 mutated genes and 3 copy number alterations are present in both melanoma and pancreatic cancers types. Since we found two patients that developed both melanoma and pancreatic cancer, we compared mutation landscape between the two tumors and identified a pathogenic variant in BRCA2 gene. This review gives valuable insights into the genetic underpinnings of melanoma and pancreatic cancer, urging the continued exploration and research of new genetic biomarkers able to identify patients and families at high risk of developing both cancers and to address to screening and to an effective clinical management of the patient.
Collapse
Affiliation(s)
| | - Federico Venturi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Veronesi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Biagio Scotti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marina Migliori
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Internal Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Desy Marini
- Internal Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudio Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Pancreas and Endocrine Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Casadei
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Pancreas and Endocrine Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Emi Dika
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Wu Q, Yu C, Yu F, Guo Y, Sheng Y, Li L, Li Y, Zhang Y, Hu C, Wang J, He TC, Huang Y, Ni H, Huo Z, Wu W, Wang GG, Lyu J, Qian Z. Evi1 governs Kdm6b-mediated histone demethylation to regulate the Laptm4b-driven mTOR pathway in hematopoietic progenitor cells. J Clin Invest 2024; 134:e173403. [PMID: 39680456 PMCID: PMC11645144 DOI: 10.1172/jci173403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Ecotropic viral integration site 1 (EVI1/MECOM) is frequently upregulated in myeloid malignancies. Here, we present an Evi1-transgenic mouse model with inducible expression in hematopoietic stem/progenitor cells (HSPCs). Upon induction of Evi1 expression, mice displayed anemia, thrombocytopenia, lymphopenia, and erythroid and megakaryocyte dysplasia with a significant expansion of committed myeloid progenitor cells, resembling human myelodysplastic syndrome/myeloproliferative neoplasm-like (MDS/MPN-like) disease. Evi1 overexpression prompted HSPCs to exit quiescence and accelerated their proliferation, leading to expansion of committed myeloid progenitors while inhibiting lymphopoiesis. Analysis of global gene expression and Evi1 binding site profiling in HSPCs revealed that Evi1 directly upregulated lysine demethylase 6b (Kdm6b). Subsequently, Kdm6b-mediated H3K27me3 demethylation resulted in activation of various genes, including Laptm4b. Interestingly, KDM6B and LAPTM4B are positively correlated with EVI1 expression in patients with MDS. The EVI1/KDM6B/H3K27me3/LAPTM4B signaling pathway was also identified in EVI1hi human leukemia cell lines. We found that hyperactivation of the LAPTM4B-driven mTOR pathway was crucial for the growth of EVI1hi leukemia cells. Knockdown of Laptm4b partially rescued Evi1-induced abnormal hematopoiesis in vivo. Thus, our study establishes a mouse model to investigate EVI1hi myeloid malignancies, demonstrating the significance of the EVI1-mediated KDM6B/H3K27me3/LAPTM4B signaling axis in their maintenance.
Collapse
Affiliation(s)
- Qiong Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Chunjie Yu
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Fang Yu
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Yue Sheng
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Liping Li
- Department of Pathology at Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Yafang Li
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Yutao Zhang
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Chao Hu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jue Wang
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Tong-chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yong Huang
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Hongyu Ni
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Wenshu Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliate People’s Hospital of Hangzhou Medical College, and
- Laboratory Medicine of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhijian Qian
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Chen D, Cai B, Zhu Y, Ma Y, Yu X, Xiong J, Shen J, Tie W, Zhang Y, Guo F. Targeting histone demethylases JMJD3 and UTX: selenium as a potential therapeutic agent for cervical cancer. Clin Epigenetics 2024; 16:51. [PMID: 38576048 PMCID: PMC10993516 DOI: 10.1186/s13148-024-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.
Collapse
Affiliation(s)
- Dezhi Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Bo Cai
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Yingying Zhu
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yimin Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Xiaoting Yu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jieqi Xiong
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Jiaying Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Weiwei Tie
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yisheng Zhang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China.
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|