1
|
Alshammari QA, Alshammari SO, Alshammari A, Alfarhan M, Baali FH. Unraveling the mechanisms of glioblastoma's resistance: investigating the influence of tumor suppressor p53 and non-coding RNAs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2569-2585. [PMID: 39476245 DOI: 10.1007/s00210-024-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma (GB) is one of the most fatal CNS malignancies, and its high resistance to therapy and poor outcomes have made it one of the primary challenges in oncology. Resistance to standard therapy, i.e., radio-chemotherapy with temozolomide, is one of the principal causes of the poor prognostic outcomes of GB. Finding the molecular basis of GB resistance to therapy is key to creating effective solution approaches. The general problem of GB resistance is supervised by cancer suppressive protein, p53, and has become a very special interest in molecular research in recent decades. The principal aim of this manuscript is to perform a comprehensive survey on the complex network of interactions developed by p53 with non-coding RNAs (ncRNA) in the context of GB resistance. The present article details the functional aspects of p53 as a cellular stress response protein, including its roles in apoptosis, cell cycle regulation, and DNA repair in glioblastoma (GB), along with the disruption of p53 and its involvement in chemoresistance (CR). It also highlights several classes of ncRNAs, namely microRNAs, long ncRNAs, and circular RNAs, that manipulate p53 signaling in GB-CR. The article likewise explains how disruption in the expression of these ncRNAs can promote GB-CR and how it interacts with essential cellular functions, such as proliferation, apoptosis, and DNA repair. The manuscript also describes the potential of targeting p53 and ncRNAs with their diagnostic and prognostic potential as novel promising therapeutics for GB. Nevertheless, ncRNA-based biomarkers still present challenges for their suitability in GB resistance. However, modern research continues to discover novel prediction targets, potentially enhancing patient outcomes and therapeutic options. Therefore, the neutralization of this intricate regulatory network of GB resistance might have a primary clinical effect in fighting GB resistance therapy and thus might lead to a substantial increase in patient survival and quality of life.
Collapse
Affiliation(s)
- Qamar A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, College of Pharmacy, Northern Border University, 76321, Rafha, Saudi Arabia
| | - Abdulkarim Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Moaddey Alfarhan
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Jizan, Saudi Arabia
| | - Fahad Hassan Baali
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
2
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The Role of the Dysregulation of circRNAs Expression in Glioblastoma Multiforme. J Mol Neurosci 2025; 75:9. [PMID: 39841303 DOI: 10.1007/s12031-024-02285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes. circRNA molecules are rich in miRNA binding sites. The discovery of more structurally diverse and GBM-related circRNAs has great promise for the use of GMB prognostic biomarkers and therapeutic targets, as well as for comprehending the molecular regulatory mechanisms of GBM. In this work, we present an overview of the circRNA expression patterns associated with GBM and offer a potential integrated electrochemical strategy for detecting circRNA with extreme sensitivity in the diagnosis of glioblastoma.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Zhang M, Zheng Z, Wang S, Liu R, Zhang M, Guo Z, Wang H, Tan W. The role of circRNAs and miRNAs in drug resistance and targeted therapy responses in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:30. [PMID: 39267922 PMCID: PMC11391347 DOI: 10.20517/cdr.2024.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs comprising 19-24 nucleotides that indirectly control gene expression. In contrast to other non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are defined by their covalently closed loops, forming covalent bonds between the 3' and 5' ends. circRNAs regulate gene expression by interacting with miRNAs at transcriptional or post-transcriptional levels. Accordingly, circRNAs and miRNAs control many biological events related to cancer, including cell proliferation, metabolism, cell cycle, and apoptosis. Both circRNAs and miRNAs are involved in the pathogenesis of diseases, such as breast cancer. This review focuses on the latest discoveries on dysregulated circRNAs and miRNAs related to breast cancer, highlighting their potential as biomarkers for clinical diagnosis, prognosis, and chemotherapy response.
Collapse
Affiliation(s)
- Meilan Zhang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, Guangdong, China
| | - Zhaokuan Zheng
- Department of Orthopedics, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of HuaduDistrict), Guangzhou 510810, Guangdong, China
| | - Shouliang Wang
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Ruihan Liu
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Mengli Zhang
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Zhiyun Guo
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, Guangdong, China
| | - Hao Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, Guangdong, China
| | - Weige Tan
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
4
|
de Abreu FMC, de Oliveira DA, de Araujo Romero Ferrari SS, E Silva KHCV, Titze-de-Almeida R, Titze-de-Almeida SS. Exploring circular RNAs as biomarkers for Parkinson's disease and their expression changes after aerobic exercise rehabilitation. Funct Integr Genomics 2024; 24:130. [PMID: 39069524 DOI: 10.1007/s10142-024-01409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Circular RNAs (circRNAs) are circularized single-stranded ribonucleic acids that interacts with DNA, RNA, and proteins to play critical roles in cell biology. CircRNAs regulate microRNA content, gene expression, and may code for specific peptides. Indeed, circRNAs are differentially expressed in neurodegenerative disorders like Parkinson's disease (PD), playing a potential role in the mechanisms of brain pathology. The RNA molecules with aberrant expression in the brain can cross the blood-brain barrier and reach the bloodstream, which enable their use as non-invasive PD disease biomarker. Promising targets with valuable discriminatory ability in combined circRNA signatures include MAPK9_circ_0001566, SLAIN1_circ_0000497, SLAIN2_circ_0126525, PSEN1_circ_0003848, circ_0004381, and circ_0017204. On the other hand, regular exercises are effective therapy for mitigating PD symptoms, promoting neuroprotective effects with epigenetic modulation. Aerobic exercises slow symptom progression in PD by improving motor control, ameliorating higher functions, and enhancing brain activity and neuropathology. These improvements are accompanied by changes circRNA expression, including hsa_circ_0001535 (circFAM13B) and hsa_circ_0000437 (circCORO1C). The sensitivity of current methods for detecting circulating circRNAs is considered a limitation. While amplification kits already exist for low-abundant microRNAs, similar kits are needed for circRNAs. Alternatively, the use of digital PCR can help overcome this constraint. The current review examines the potential use of circRNAs as non-invasive biomarkers of PD and to assess the effects of rehabilitation. Although circRNAs hold promise as targets for PD diagnosis and therapeutics, further validation is needed before their clinical implementation.
Collapse
Affiliation(s)
- Flávia Maria Campos de Abreu
- Graduate Program in Gerontology, Campus Taguatinga, Universidade Católica de Brasília, Brasília DF, Brazil
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
| | - Deborah Almeida de Oliveira
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Sabrina Simplício de Araujo Romero Ferrari
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | | | - Ricardo Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil
| | - Simoneide Souza Titze-de-Almeida
- University of Brasília - Central Institute of Sciences, Technology for Gene Therapy Laboratory / FAV, Brasília, Brazil.
- University of Brasília - Central Institute of Sciences, Research Center for Major Themes - Neurodegenerative Disorders Group, Brasília, Brazil.
| |
Collapse
|
5
|
Bedair HM, El-Banna EA, Ahmed EA, Elhelbawy MG, Abdelfattah A, Khalaf FA, Abdel-Samiee M, El Sharnoby A. Evaluation of Circular RNA SMARCA5 as a Novel Biomarker for Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2024; 25:1411-1417. [PMID: 38680002 PMCID: PMC11162735 DOI: 10.31557/apjcp.2024.25.4.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fourth most prevalent type of cancer in Egypt and the sixth globally. Most patients with HCC are typically diagnosed during the advanced stages of the disease due to the absence of biomarkers for early detection. Consequently, these patients miss the optimal timeframe for receiving therapy. OBJECTIVE we aimed to assess the circular RNA SMARCA5 level and SMARCA5 mRNA gene expression as a potential biomarker for early detection of HCC. METHODS The present study utilized a case-control design comprising 159 participants. Participants were selected from both inpatient and outpatient hepatology and gastroenterology clinics at the National Liver Institute Hospital, Menoufia University. They were evenly distributed among three groups: Group I: 53 control subjects, Group II: 53 HCV cirrhotic patients, and Group III: 53 HCC patients. Tumor staging was done using BCLC staging system. Each patient underwent a thorough clinical examination, radiological examination, complete history taking, and serum Alpha-fetoprotein (AFP) assessment and detection of circular RNASMARCA5 and SMARCA5mRNA gene sutilizing quantitative real-time polymerase chain reaction. RESULTS Statistically substantial differences were observed in the examined groups in terms of AFP, SMARCA5, and CircSMARCA5 (P-value = 0.001, 0.001 & 0.001). CircSMARCA5 and SMARCA5mRNA were markedly down regulated in the HCC group compared to HCV cirrhotic patients and controls. ROC analysis for early HCC diagnosis demonstrated that the CircSMARCA5 area under the curve (AUC) at cut-off point 4.55 yielded a specificity of 83.8% and sensitivity of 91.7%. The AUC for AFP at a cut-off point of 515ng/ml yielded a specificity of 89.2% and a sensitivity of 91.3%. CONCLUSION CircSMARCA5 has the potential to be a more sensitive predictor of HCC disease compared to AFP.
Collapse
Affiliation(s)
- Hanan M. Bedair
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | - Elaf A El-Banna
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | - Elhamy A. Ahmed
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | - Mostafa G Elhelbawy
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | - Ahmed Abdelfattah
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | - Fatma A. Khalaf
- Department of Clinical Biochemistry, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | - Mohamed Abdel-Samiee
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| | - Amal El Sharnoby
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.
| |
Collapse
|
6
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
7
|
Liu F, Li W, Jin Z, Ye J. METTL3-mediated m6A modification of circRNF220 modulates miR-330-5p/survivin axis to promote osteosarcoma progression. J Cancer Res Clin Oncol 2023; 149:17347-17360. [PMID: 37838643 PMCID: PMC10657300 DOI: 10.1007/s00432-023-05455-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) play a crucial role in regulating various physiological processes. However, the precise regulatory mechanisms of circRNF220s in osteosarcoma (OS) are not well understood. METHODS The abundances of circRNF220, miR-330-5p, and survivin were determined using qRT-PCR. To assess the m6A accumulation in circRNF220, a methylated RNA immunoprecipitation (Me-RIP) assay was conducted. Cellular multiplication, motility, and invasion were examined using the cell Counting Kit-8 (CCK-8), EdU, colony formation, Transwell, and wound-healing assays. The binding relationships were measured through RNA immunoprecipitation (RIP) and luciferase reporter assays. In vivo functionality was assessed using xenograft models. RESULTS CircRNF220 was identified as being overexpressed in both OS cells and tissues. In vitro experiments demonstrated that silencing circRNF220 impeded the proliferation, invasion, and motility of OS cells. Similarly, in vivo studies confirmed that downregulating circRNF220 inhibited the growth of OS. Further mechanistic investigations unveiled that METTL3-modulated circRNF220 regulated the progression of OS by upregulating survivin expression through acting as a sponge for miR-330-5p. CONCLUSION The modulation of METTL3-regulated circRNF220 has been found to promote the progression of OS by modulating the miR-330-5p/survivin axis. This novel finding suggests a potentially unique approach to managing OS.
Collapse
Affiliation(s)
- Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhihui Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia Ye
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Hussein NA, El Sewedy SM, Zakareya MM, Youssef EA, Ibrahim FAR. Expression status of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 in patients with colorectal cancer. Sci Rep 2023; 13:13308. [PMID: 37587156 PMCID: PMC10432413 DOI: 10.1038/s41598-023-40358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Colorectal cancer (CRC) poses a significant burden on both the healthcare systems as well as individuals. The high mortality rate of CRC may be attributed to its metastatic potential, heterogeneity, and delayed diagnosis. CircRNAs are an essential class of regulatory RNAs that play significant roles in cancers. This study aimed to detect the expression status of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 in patients with CRC. This study included 50 CRC patients, 30 individuals with colorectal diseases (non-cancer), and 20 healthy volunteers. By using real-time PCR, the relative expression of circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 was determined in the collected blood samples. In addition, ECLIA was used to quantify carcinoembryonic antigen (CEA) level. All circRNAs expression and CEA levels were significantly up-regulated in cancer patients (CRC, colon, rectum) as compared to healthy controls, except circ-SMARCA5. Moreover, there was a significant up-regulation of circRNAs in most non-cancer patients (UC, polyp, piles). Insignificant upregulation was observed in circRNAs and CEA when comparing cancer with non-cancer patients. No correlations were found between the studied parameters and most clinicopathological characteristics of cancer and non-cancer patients. Circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 were differentially expressed in patients with CRC as well as in non-cancer patients. Circ-SMARCA5 and circ-NOL10 may act as tumor suppressors, while circ-LDLRAD3 and circ-RHOT1 may be oncogenes. Circ-SMARCA5, circ-NOL10, circ-LDLRAD3, and circ-RHOT1 could be promising markers for the early detection of CRC.
Collapse
Affiliation(s)
- Neveen A Hussein
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Shehata M El Sewedy
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed M Zakareya
- Colorectal Surgical Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Engy A Youssef
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Fawziya A R Ibrahim
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
You T, Kuang F. CIRC_0008882 STIMULATES PDE7A TO SUPPRESS SEPTIC ACUTE KIDNEY INJURY PROGRESSION BY SPONGING MIR-155-5P. Shock 2023; 59:657-665. [PMID: 36772990 DOI: 10.1097/shk.0000000000002093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
ABSTRACT Background: The importance of circular RNA (circRNA) in the progression of septic acute kidney injury (AKI) was gradually recognized. It has been confirmed that circ_0008882 expression was decreased in the blood of patients with AKI. However, the role of circ_0008882 in septic AKI progression remains unclear. Methods: Human kidney-2 (HK2) cells were stimulated with lipopolysaccharide (LPS) to establish a septic AKI cell model. The RNA and protein expression of circ_0008882, miR-155-5p, phosphodiesterase 7A (PDE7A), PCNA, Bax, and Bcl-2 were detected by quantitative real-time polymerase chain reaction and Western blot. Cell viability was investigated by cell counting kit-8 assay. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the levels of inflammatory factors (TNF-α, IL-1β, and IL-6). Flow cytometry was implemented to evaluate cell cycle and cell apoptosis. The Caspase3 activity was examined using Caspase3 Assay Kit. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to verify the molecular target relations. Results: Septic AKI serum samples and LPS-induced HK2 cells displayed low expression of circ_0008882 and PDE7A, and high expression of miR-155-5p when compared with the controls. Overexpression of circ_0008882 relieved LPS-induced HK2 cell injury. MiR-155-5p was a target of circ_0008882, and miR-155-5p mimic restored circ_0008882 overexpression-mediated effects on LPS-treated HK2 cells. PDE7A was identified as a target gene of miR-155-5p, and PDE7A downregulation almost reverted the improvement impacts induced by the miR-155-5p inhibitor. Conclusions: Overexpression of circ_0008882 impeded LPS-induced HK2 cell injury by modulating miR-155-5p/PDE7A pathway, implying that circ_0008882 might be a possible circRNA-targeted therapy for septic AKI.
Collapse
Affiliation(s)
- Ting You
- Department of Emergency, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | | |
Collapse
|
10
|
Ikeda Y, Morikawa S, Nakashima M, Yoshikawa S, Taniguchi K, Sawamura H, Suga N, Tsuji A, Matsuda S. CircRNAs and RNA-Binding Proteins Involved in the Pathogenesis of Cancers or Central Nervous System Disorders. Noncoding RNA 2023; 9:23. [PMID: 37104005 PMCID: PMC10142617 DOI: 10.3390/ncrna9020023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have established widespread attention due to their regulatory role in cell signaling. They are covalently closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor RNAs. CircRNAs are key post-transcriptional and post-translational regulators of gene expression programs that might influence cellular response and/or function. In particular, circRNAs have been considered to function as sponges of specific miRNA, regulating cellular processes at the post-transcription stage. Accumulating evidence has shown that the aberrant expression of circRNAs could play a key role in the pathogenesis of several diseases. Notably, circRNAs, microRNAs, and several RNA-binding proteins, including the antiproliferative (APRO) family proteins, could be indispensable gene modulators, which might be strongly linked to the occurrence of diseases. In addition, circRNAs have attracted general interest for their stability, abundance in the brain, and their capability to cross the blood-brain barrier. Here, we present the current findings and theragnostic potentials of circRNAs in several diseases. With this, we aim to provide new insights to support the development of novel diagnostic and/or therapeutic strategies for these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|