1
|
Suntharalingham JP, Del Valle I, Buonocore F, McGlacken-Byrne SM, Brooks T, Ogunbiyi OK, Liptrot D, Dunton N, Madhan GK, Metcalfe K, Nel L, Marshall AR, Ishida M, Sebire NJ, Moore GE, Crespo B, Solanky N, Conway GS, Achermann JC. The transcriptomic landscape of monosomy X (45,X) during early human fetal and placental development. Commun Biol 2025; 8:249. [PMID: 39956831 PMCID: PMC11830783 DOI: 10.1038/s42003-025-07699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
Monosomy X (45,X) is associated with Turner syndrome and pregnancy loss in humans, but the underlying mechanisms remain unclear. We therefore undertook an exploratory study of the transcriptomic landscape of clinically relevant human fetal 45,X tissues (including pancreas, liver, kidney, skin, placenta) with matched 46,XX and 46,XY control samples between 11 and 15 weeks post conception (n = 78). Although most pseudoautosomal region 1 (PAR1) genes are lower in monosomy X tissues, we also found reduced expression of several key genes escaping X inactivation (e.g., KDM5C and KDM6A), several ancestral X-Y gene pairs, and potentially clinically important transcripts such as genes implicated in ascending aortic aneurysm. In contrast, higher expression of an autosomal, long non-coding RNA (OVCH1-AS1) is seen in all 45,X tissues. In the placenta, lower expression of CSF2RA is demonstrated, likely contributing to immune dysregulation. Taken together, these findings provide insights into the biological consequences of a single X chromosome during early human development and potential insights in genetic mechanisms in Turner syndrome.
Collapse
Affiliation(s)
- Jenifer P Suntharalingham
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Ignacio Del Valle
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Federica Buonocore
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Sinead M McGlacken-Byrne
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Tony Brooks
- UCL Genomics, UCL Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
| | - Olumide K Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
- NIHR Great Ormond Street Biomedical Research Centre, London, WC1N 1EH, UK
| | - Danielle Liptrot
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Nathan Dunton
- UCL Genomics, UCL Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
| | - Gaganjit K Madhan
- UCL Genomics, UCL Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1DZ, UK
| | - Kate Metcalfe
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Lydia Nel
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Miho Ishida
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Neil J Sebire
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
- NIHR Great Ormond Street Biomedical Research Centre, London, WC1N 1EH, UK
| | - Gudrun E Moore
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Nita Solanky
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, WC1E 6AU, UK
| | - John C Achermann
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
2
|
Just J, Ridder LOR, Johannsen EB, Jensen JMB, Petersen MS, Christensen HV, Kjærgaard K, Redder J, Chang S, Stochholm K, Skakkebæk A, Gravholt CH. Elevated levels of neutrophils with a pro-inflammatory profile in Turner syndrome across karyotypes. NPJ Genom Med 2025; 10:9. [PMID: 39915521 PMCID: PMC11803089 DOI: 10.1038/s41525-025-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Turner syndrome (TS) presents with multiple karyotypes, including 45,X monosomy and variants such as isochromosomes and mosaicism, and is characterized by several co-morbidities, including metabolic conditions and autoimmunity. Here, we investigated the genomic landscapes across a range of karyotypes. We show that TS have a common autosomal methylome and transcriptome, despite distinct karyotypic variations. All TS individuals lacked the X chromosome p-arm, and XIST expression from the q-arm did not affect the autosomal transcriptome or methylome, highlighting the critical role of the missing p-arm with its pseudoautosomal region 1. Furthermore, we show increased levels of neutrophils and increased neutrophil activation. The increase in neutrophils was linked to TS clinical traits and to increased expression of the X-Y homologous gene TBL1X, suggesting a genetic basis, which may lead to neutrophil-driven inflammatory stress in TS. Identifying TS individuals with increased neutrophil activation could potentially mitigate the progression towards more severe metabolic issues.
Collapse
Affiliation(s)
- Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Lukas Ochsner Reynaud Ridder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| | - Emma Bruun Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Magnus Bernth Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Kenneth Kjærgaard
- Department of Data and Data Utilization, Central Denmark Region, Denmark
| | - Jacob Redder
- Department of Data and Data Utilization, Central Denmark Region, Denmark
| | - Simon Chang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Kirstine Stochholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
3
|
de Oliveira JCC, Barbosa EDS, Silva NB, Silva TDC, Matos AGDM, Pinho JD. Non-coding rnas in Turner syndrome: a systematic review. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 43:e2024029. [PMID: 39630788 PMCID: PMC11606598 DOI: 10.1590/1984-0462/2025/43/2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/24/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The aim of this study was to summarize the main findings of non-coding RNA (ncRNAs) in Turner syndrome (TS), correlating these biomolecules with the clinical manifestations in affected patients. DATA SOURCE Searches were conducted in the databases of the United States National Library of Medicine (PubMed), Scientific Electronic Library Online (SciELO), and ScienceDirect, covering original English articles published from 2014 to 2023. Descriptors used included "lncRNAs and Turner Syndrome," "miRNAs and Turner Syndrome," and "circRNAs and Turner Syndrome." The studies that were included addressed the role of ncRNAs in the clinical characteristics of patients with TS. Exclusion criteria comprised texts in abstracts, reports, reviews, and monographs. DATA SYNTHESIS We identified 147 studies, of which seven were included. In the analysis of microRNAs, miR-486-5p and miR-320a stood out, being associated with ovarian development; miR-126-3p and miR-126-5p were related to greater aortic stiffness. Regarding long non-coding RNAs, the downregulation of XIST indicated dysfunctions in X chromosome inactivation. Concerning circular RNAs, circPPP2R3B, circCSF2RA, and circPCTN were related to immunological functions, while circ_0090421, circ_0090392, and circ_0089945 were linked to cardiac development. CONCLUSIONS The data from these studies demonstrate that these biomolecules play crucial roles in processes related to specific characteristics observed in TS patients. Besides being suggested as potential biomarkers, they may be useful in clinical practice.
Collapse
|
4
|
Gravholt CH, Andersen NH, Christin-Maitre S, Davis SM, Duijnhouwer A, Gawlik A, Maciel-Guerra AT, Gutmark-Little I, Fleischer K, Hong D, Klein KO, Prakash SK, Shankar RK, Sandberg DE, Sas TCJ, Skakkebæk A, Stochholm K, van der Velden JA, Backeljauw PF. Clinical practice guidelines for the care of girls and women with Turner syndrome. Eur J Endocrinol 2024; 190:G53-G151. [PMID: 38748847 PMCID: PMC11759048 DOI: 10.1093/ejendo/lvae050] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 06/16/2024]
Abstract
Turner syndrome (TS) affects 50 per 100 000 females. TS affects multiple organs through all stages of life, necessitating multidisciplinary care. This guideline extends previous ones and includes important new advances, within diagnostics and genetics, estrogen treatment, fertility, co-morbidities, and neurocognition and neuropsychology. Exploratory meetings were held in 2021 in Europe and United States culminating with a consensus meeting in Aarhus, Denmark in June 2023. Prior to this, eight groups addressed important areas in TS care: (1) diagnosis and genetics, (2) growth, (3) puberty and estrogen treatment, (4) cardiovascular health, (5) transition, (6) fertility assessment, monitoring, and counselling, (7) health surveillance for comorbidities throughout the lifespan, and (8) neurocognition and its implications for mental health and well-being. Each group produced proposals for the present guidelines, which were meticulously discussed by the entire group. Four pertinent questions were submitted for formal GRADE (Grading of Recommendations, Assessment, Development and Evaluation) evaluation with systematic review of the literature. The guidelines project was initiated by the European Society for Endocrinology and the Pediatric Endocrine Society, in collaboration with members from the European Society for Pediatric Endocrinology, the European Society of Human Reproduction and Embryology, the European Reference Network on Rare Endocrine Conditions, the Society for Endocrinology, and the European Society of Cardiology, Japanese Society for Pediatric Endocrinology, Australia and New Zealand Society for Pediatric Endocrinology and Diabetes, Latin American Society for Pediatric Endocrinology, Arab Society for Pediatric Endocrinology and Diabetes, and the Asia Pacific Pediatric Endocrine Society. Advocacy groups appointed representatives for pre-meeting discussions and the consensus meeting.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology, Aarhus University Hospital,
8200 Aarhus N, Denmark
- Department of Molecular Medicine, Aarhus University Hospital,
8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University,
8200 Aarhus N, Denmark
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital,
9000 Aalborg, Denmark
| | - Sophie Christin-Maitre
- Endocrine and Reproductive Medicine Unit, Center of Rare Endocrine Diseases
of Growth and Development (CMERCD), FIRENDO, Endo ERN Hôpital Saint-Antoine, Sorbonne
University, Assistance Publique-Hôpitaux de Paris, 75012
Paris, France
| | - Shanlee M Davis
- Department of Pediatrics, University of Colorado School of
Medicine, Aurora, CO 80045, United States
- eXtraOrdinarY Kids Clinic, Children's Hospital Colorado,
Aurora, CO 80045, United
States
| | - Anthonie Duijnhouwer
- Department of Cardiology, Radboud University Medical Center,
Nijmegen 6500 HB, The
Netherlands
| | - Aneta Gawlik
- Departments of Pediatrics and Pediatric Endocrinology, Faculty of Medical
Sciences in Katowice, Medical University of Silesia, 40-752 Katowice,
Poland
| | - Andrea T Maciel-Guerra
- Area of Medical Genetics, Department of Translational Medicine, School of
Medical Sciences, State University of Campinas, 13083-888 São
Paulo, Brazil
| | - Iris Gutmark-Little
- Cincinnati Children's Hospital Medical Center, University of
Cincinnati, Cincinnati, Ohio 45229, United States
| | - Kathrin Fleischer
- Department of Reproductive Medicine, Nij Geertgen Center for
Fertility, Ripseweg 9, 5424 SM Elsendorp,
The Netherlands
| | - David Hong
- Division of Interdisciplinary Brain Sciences, Stanford University School of
Medicine, Stanford, CA 94304, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University
School of Medicine, Stanford, CA 94304, United States
| | - Karen O Klein
- Rady Children's Hospital, University of California,
San Diego, CA 92123, United
States
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center
at Houston, Houston, TX 77030, United States
| | - Roopa Kanakatti Shankar
- Division of Endocrinology, Children's National Hospital, The George
Washington University School of Medicine, Washington, DC
20010, United States
| | - David E Sandberg
- Susan B. Meister Child Health Evaluation and Research Center, Department of
Pediatrics, University of Michigan, Ann Arbor, MI
48109-2800, United States
- Division of Pediatric Psychology, Department of Pediatrics, University of
Michigan, Ann Arbor, MI 48109-2800, United States
| | - Theo C J Sas
- Department the Pediatric Endocrinology, Sophia Children's
Hospital, Rotterdam 3015 CN, The Netherlands
- Department of Pediatrics, Centre for Pediatric and Adult Diabetes Care and
Research, Rotterdam 3015 CN, The Netherlands
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital,
8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University,
8200 Aarhus N, Denmark
- Department of Clinical Genetics, Aarhus University Hospital,
8200 Aarhus N, Denmark
| | - Kirstine Stochholm
- Department of Endocrinology, Aarhus University Hospital,
8200 Aarhus N, Denmark
- Center for Rare Diseases, Department of Pediatrics, Aarhus University
Hospital, 8200 Aarhus N, Denmark
| | - Janielle A van der Velden
- Department of Pediatric Endocrinology, Radboud University Medical Center,
Amalia Children's Hospital, Nijmegen 6500 HB,
The Netherlands
| | - Philippe F Backeljauw
- Cincinnati Children's Hospital Medical Center, University of
Cincinnati, Cincinnati, Ohio 45229, United States
| |
Collapse
|
5
|
Westemeier-Rice ES, Winters MT, Rawson TW, Martinez I. More than the SRY: The Non-Coding Landscape of the Y Chromosome and Its Importance in Human Disease. Noncoding RNA 2024; 10:21. [PMID: 38668379 PMCID: PMC11054740 DOI: 10.3390/ncrna10020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Historically, the Y chromosome has presented challenges to classical methodology and philosophy of understanding the differences between males and females. A genetic unsolved puzzle, the Y chromosome was the last chromosome to be fully sequenced. With the advent of the Human Genome Project came a realization that the human genome is more than just genes encoding proteins, and an entire universe of RNA was discovered. This dark matter of biology and the black box surrounding the Y chromosome have collided over the last few years, as increasing numbers of non-coding RNAs have been identified across the length of the Y chromosome, many of which have played significant roles in disease. In this review, we will uncover what is known about the connections between the Y chromosome and the non-coding RNA universe that originates from it, particularly as it relates to long non-coding RNAs, microRNAs and circular RNAs.
Collapse
Affiliation(s)
- Emily S. Westemeier-Rice
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Michael T. Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Travis W. Rawson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| | - Ivan Martinez
- West Virginia University Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (M.T.W.); (T.W.R.)
| |
Collapse
|
6
|
Peng Z, Yang R, Liu Q, Chen B, Long P. X chromosome rearrangement associated with premature ovarian insufficiency as diagnosed by molecular cytogenetic methods: a case report and review of the literature. Mol Cytogenet 2024; 17:7. [PMID: 38570848 PMCID: PMC10988863 DOI: 10.1186/s13039-024-00676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a clinical condition characterized by ovarian dysfunction in women under 40. The etiology of most POI cases remains unidentified and is believed to be multifactorial, including factors such as autoimmunity, metabolism, infection, and genetics. POI exhibits significant genetic heterogeneity, and it can result from chromosomal abnormalities and monogenic defects. CASE PRESENTATION The study participant, a 33-year-old woman, presented with a history of irregular menstruation that commenced two years ago, progressing to prolonged menstrual episodes and eventual cessation. The participant exhibits a rearrangement of the X chromosome, characterized by heterozygosity duplication on the long arm and heterozygosity deletion on the short arm by whole exome sequencing(WES) combined with cell chromosome detection. CONCLUSIONS This study expands the spectrum of mutations associated with POI resulting from X chromosomal abnormalities. WES-Copy number variation analysis, in conjunction with chromosome karyotype analysis and other detection techniques, can provide a more comprehensive understanding of the genetic landscape underlying complex single or multi-system diseases.
Collapse
Affiliation(s)
- Zhifang Peng
- Genetic center, Changsha Jiangwan Maternity Hospital, Changsha, 410000, China
| | - Renqi Yang
- Genetic center, Changsha Jiangwan Maternity Hospital, Changsha, 410000, China
| | - Qing Liu
- Genetic center, Changsha Jiangwan Maternity Hospital, Changsha, 410000, China
| | - Binbin Chen
- Genetic center, Changsha Jiangwan Maternity Hospital, Changsha, 410000, China
| | - Panpan Long
- Genetic center, Changsha Jiangwan Maternity Hospital, Changsha, 410000, China.
| |
Collapse
|
7
|
Johannsen EB, Skakkebæk A, Kalucka JM, Fedder J, Gravholt CH, Just J. The testicular microvasculature in Klinefelter syndrome is immature with compromised integrity and characterized by excessive inflammatory cross-talk. Hum Reprod 2023; 38:2339-2349. [PMID: 37910660 PMCID: PMC10694403 DOI: 10.1093/humrep/dead224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
STUDY QUESTION Does Klinefelter syndrome (KS) lead to a distinct gene expression pattern at single-cell level in the testes that could provide insight into the reported microvascular dysfunction in the testes? SUMMARY ANSWER A distinct gene expression pattern within microvascular-associated cells of males with KS suggests excessive endothelial cell (EC) activation, disorganized vessel formation, and the presence of immature vessels with compromised integrity. WHAT IS KNOWN ALREADY Recent studies show that males with KS exhibit microvascular dysfunction in their testes, which affects blood flow and is associated with lower circulating levels of testosterone. STUDY DESIGN, SIZE, DURATION A comparative cross-sectional study of males with KS (n = 6), non-obstructive azoospermia (NOA) (n = 5), cryptozoospermia (n = 3), and controls (n = 15) was carried out. PARTICIPANTS/MATERIALS, SETTING, METHODS We analyzed publicly available single-cell RNA sequencing data of testicular cells from males with KS, males with NOA, males with cryptozoospermia, and controls. The integration of these datasets allowed us to analyze gene expression profiles and communication patterns among the cell types within the testis and to identify capillary ECs to investigate changes at the microvascular level. MAIN RESULTS AND THE ROLE OF CHANCE Rooted in changes at the single-cell level, our study demonstrates a shift in gene expression forming the foundation for altered cellular communication, microvascular remodeling, and pro-inflammatory responses within the testes of males with KS. We identified genes that were dysregulated in capillary ECs from males with KS (Padj < 0.05). Specifically, the unique microvascular gene expression in males with KS indicated enhanced capillary EC activation and increased inflammatory cross-talk, leading to impaired vessel maturation and increased EC barrier permeability. LIMITATIONS, REASONS FOR CAUTION Our study is constrained by an unbalanced design, with varying sample sizes and number of cells within each group. We acknowledge the restricted access to clinical information. In addition, our findings were deduced from changes in gene expression, which limits us to infer potential biological consequences arising from these alterations. Furthermore, the absence of a pre-pubertal age group limits the generalizability of our findings and warrants further investigation. WIDER IMPLICATIONS OF THE FINDINGS This study offers novel insights into the testicular pathophysiology in KS and underscores the potential contribution of microvascular dysfunction to the hypogonadism and infertility observed in males with KS. While this study aims to better understand the microvascular dysfunction in KS, the precise connections to testosterone deficiency and testicular atrophy remain to be fully elucidated. STUDY FUNDING/COMPETING INTEREST(S) A.S. was supported by the Independent Research Fund Denmark (0134-00130B). C.H.G. was supported by Novo Nordisk Foundation (NNF15OC0016474, NNF20OC0060610), 'Fonden til lægevidenskabens fremme', the Familien Hede Nielsen foundation and the Independent Research Fund Denmark (0134-00406A). E.B.J. was supported by Aarhus University and E.B.J. and C.H.G by the Independent Research Fund Denmark (2096-00165A). J.M.K. was supported by Lundbeckfonden (R307-2018-3667), Carlsberg Fonden (CF19-0687), Novo Nordisk Fonden (0073440) and Steno Diabetes Center Aarhus (SDCA). The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | - Joanna M Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Jens Fedder
- Centre of Andrology and Fertility Clinic, Odense University Hospital, Odense C, Denmark
- Research Unit of Gynaecology and Obstetrics, University of Southern Denmark, Odense C, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
8
|
Suntharalingham JP, Ishida M, Cameron-Pimblett A, McGlacken-Byrne SM, Buonocore F, del Valle I, Madhan GK, Brooks T, Conway GS, Achermann JC. Analysis of genetic variability in Turner syndrome linked to long-term clinical features. Front Endocrinol (Lausanne) 2023; 14:1227164. [PMID: 37800145 PMCID: PMC10548239 DOI: 10.3389/fendo.2023.1227164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
Background Women with Turner syndrome (TS) (45,X and related karyotypes) have an increased prevalence of conditions such as diabetes mellitus, obesity, hypothyroidism, autoimmunity, hypertension, and congenital cardiovascular anomalies (CCA). Whilst the risk of developing these co-morbidities may be partly related to haploinsufficiency of key genes on the X chromosome, other mechanisms may be involved. Improving our understanding of underlying processes is important to develop personalized approaches to management. Objective We investigated whether: 1) global genetic variability differs in women with TS, which might contribute to co-morbidities; 2) common variants in X genes - on the background of haploinsufficiency - are associated with phenotype (a "two-hit" hypothesis); 3) the previously reported association of autosomal TIMP3 variants with CCA can be replicated. Methods Whole exome sequencing was undertaken in leukocyte DNA from 134 adult women with TS and compared to 46,XX controls (n=23), 46,XX women with primary ovarian insufficiency (n=101), and 46,XY controls (n=11). 1) Variability in autosomal and X chromosome genes was analyzed for all individuals; 2) the relation between common X chromosome variants and the long-term phenotypes listed above was investigated in a subgroup of women with monosomy X; 3) TIMP3 variance was investigated in relation to CCA. Results Standard filtering identified 6,457,085 autosomal variants and 126,335 X chromosome variants for the entire cohort, whereas a somatic variant pipeline identified 16,223 autosomal and 477 X chromosome changes. 1) Overall exome variability of autosomal genes was similar in women with TS and control/comparison groups, whereas X chromosome variants were proportionate to the complement of X chromosome material; 2) when adjusted for multiple comparisons, no X chromosome gene/variants were strongly enriched in monosomy X women with key phenotypes compared to monosomy X women without these conditions, although several variants of interest emerged; 3) an association between TIMP3 22:32857305:C-T and CCA was found (CCA 13.6%; non-CCA 3.4%, p<0.02). Conclusions Women with TS do not have an excess of genetic variability in exome analysis. No obvious X-chromosome variants driving phenotype were found, but several possible genes/variants of interest emerged. A reported association between autosomal TIMP3 variance and congenital cardiac anomalies was replicated.
Collapse
Affiliation(s)
- Jenifer P. Suntharalingham
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Miho Ishida
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Sinead M. McGlacken-Byrne
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Federica Buonocore
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ignacio del Valle
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Gaganjit Kaur Madhan
- UCL Genomics, UCL Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, UCL Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Gerard S. Conway
- Institute for Women’s Health, University College London, London, United Kingdom
| | - John C. Achermann
- Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
9
|
Tallaksen HBL, Johannsen EB, Just J, Viuff MH, Gravholt CH, Skakkebæk A. The multi-omic landscape of sex chromosome abnormalities: current status and future directions. Endocr Connect 2023; 12:e230011. [PMID: 37399516 PMCID: PMC10448593 DOI: 10.1530/ec-23-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Sex chromosome abnormalities (SCAs) are chromosomal disorders with either a complete or partial loss or gain of sex chromosomes. The most frequent SCAs include Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Trisomy X syndrome (47,XXX), and Double Y syndrome (47,XYY). The phenotype seen in SCAs is highly variable and may not merely be due to the direct genomic imbalance from altered sex chromosome gene dosage but also due to additive alterations in gene networks and regulatory pathways across the genome as well as individual genetic modifiers. This review summarizes the current insight into the genomics of SCAs. In addition, future directions of research that can contribute to decipher the genomics of SCA are discussed such as single-cell omics, spatial transcriptomics, system biology thinking, human-induced pluripotent stem cells, and animal models, and how these data may be combined to bridge the gap between genomics and the clinical phenotype.
Collapse
Affiliation(s)
- Helene Bandsholm Leere Tallaksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Skakkebæk A, Kjær-Sørensen K, Matchkov VV, Christensen LL, Just J, Cömert C, Andersen NH, Oxvig C, Gravholt CH. Dosage of the pseudoautosomal gene SLC25A6 is implicated in QTc interval duration. Sci Rep 2023; 13:12089. [PMID: 37495650 PMCID: PMC10372092 DOI: 10.1038/s41598-023-38867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
The genetic architecture of the QT interval, defined as the period from onset of depolarisation to completion of repolarisation of the ventricular myocardium, is incompletely understood. Only a minor part of the QT interval variation in the general population has been linked to autosomal variant loci. Altered X chromosome dosage in humans, as seen in sex chromosome aneuploidies such as Turner syndrome (TS) and Klinefelter syndrome (KS), is associated with altered QTc interval (heart rate corrected QT), indicating that genes, located in the pseudoautosomal region 1 of the X and Y chromosomes may contribute to QT interval variation. We investigate the dosage effect of the pseudoautosomal gene SLC25A6, encoding the membrane ADP/ATP translocase 3 in the inner mitochondrial membrane, on QTc interval duration. To this end we used human participants and in vivo zebrafish models. Analyses in humans, based on 44 patients with KS, 44 patients with TS, 59 male and 22 females, revealed a significant negative correlation between SLC25A6 expression level and QTc interval duration. Similarly, downregulation of slc25a6 in zebrafish increased QTc interval duration with pharmacological inhibition of KATP channels restoring the systolic duration, whereas overexpression of SLC25A6 shortened QTc, which was normalized by pharmacological activation of KATP channels. Our study demonstrate an inverse relationship between SLC25A6 dosage and QTc interval indicating that SLC25A6 contributes to QT interval variation.
Collapse
Affiliation(s)
- Anne Skakkebæk
- Department of Clinical Genetics, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Lise-Lotte Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Juul A, Gravholt CH, De Vos M, Koledova E, Cools M. Individuals with numerical and structural variations of sex chromosomes: interdisciplinary management with focus on fertility potential. Front Endocrinol (Lausanne) 2023; 14:1160884. [PMID: 37214245 PMCID: PMC10197804 DOI: 10.3389/fendo.2023.1160884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Diagnosis and management of individuals who have differences of sex development (DSD) due to numerical or structural variations of sex chromosomes (NSVSC) remains challenging. Girls who have Turner syndrome (45X) may present with varying phenotypic features, from classical/severe to minor, and some remain undiagnosed. Boys and girls who have 45,X/46,XY chromosomal mosaicism may have Turner syndrome-like features and short stature; therefore, unexplained short stature during childhood requires karyotype analysis in both sexes, particularly if characteristic features or atypical genitalia are present. Many individuals with Klinefelter syndrome (47XXY) remain undiagnosed or are only diagnosed as adults due to fertility problems. Newborn screening by heel prick tests could potentially identify sex chromosome variations but would have ethical and financial implications, and in-depth cost-benefit analyses are needed before nationwide screening can be introduced. Most individuals who have NSVSC have lifelong co-morbidities and healthcare should be holistic, personalized and centralized, with a focus on information, psychosocial support and shared decision-making. Fertility potential should be assessed individually and discussed at an appropriate age. Oocyte or ovarian tissue cryopreservation is possible in some women who have Turner syndrome and live births have been reported following assisted reproductive technology (ART). Testicular sperm cell extraction (TESE) is possible in some men who have 45,X/46,XY mosaicism, but there is no established protocol and no reported fathering of children. Some men with Klinefelter syndrome can now father a child following TESE and ART, with multiple reports of healthy live births. Children who have NSVSC, their parents and DSD team members need to address possibilities and ethical questions relating to potential fertility preservation, with guidelines and international studies still needed.
Collapse
Affiliation(s)
- Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claus H. Gravholt
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michel De Vos
- Brussels IVF, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ekaterina Koledova
- Global Medical Affairs Cardiometabolic and Endocrinology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Pediatric Endocrinology Service, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Viuff M, Skakkebæk A, Johannsen EB, Chang S, Pedersen SB, Lauritsen KM, Pedersen MGB, Trolle C, Just J, Gravholt CH. X chromosome dosage and the genetic impact across human tissues. Genome Med 2023; 15:21. [PMID: 36978128 PMCID: PMC10053618 DOI: 10.1186/s13073-023-01169-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Sex chromosome aneuploidies (SCAs) give rise to a broad range of phenotypic traits and diseases. Previous studies based on peripheral blood samples have suggested the presence of ripple effects, caused by altered X chromosome number, affecting the methylome and transcriptome. Whether these alterations can be connected to disease-specific tissues, and thereby having clinical implication for the phenotype, remains to be elucidated. METHODS We performed a comprehensive analysis of X chromosome number on the transcriptome and methylome in blood, fat, and muscle tissue from individuals with 45,X, 46,XX, 46,XY, and 47,XXY. RESULTS X chromosome number affected the transcriptome and methylome globally across all chromosomes in a tissue-specific manner. Furthermore, 45,X and 47,XXY demonstrated a divergent pattern of gene expression and methylation, with overall gene downregulation and hypomethylation in 45,X and gene upregulation and hypermethylation in 47,XXY. In fat and muscle, a pronounced effect of sex was observed. We identified X chromosomal genes with an expression pattern different from what would be expected based on the number of X and Y chromosomes. Our data also indicate a regulatory function of Y chromosomal genes on X chromosomal genes. Fourteen X chromosomal genes were downregulated in 45,X and upregulated in 47,XXY, respectively, in all three tissues (AKAP17A, CD99, DHRSX, EIF2S3, GTPBP6, JPX, KDM6A, PP2R3B, PUDP, SLC25A6, TSIX, XIST, ZBED1, ZFX). These genes may be central in the epigenetic and genomic regulation of sex chromosome aneuploidies. CONCLUSION We highlight a tissue-specific and complex effect of X chromosome number on the transcriptome and methylome, elucidating both shared and non-shared gene-regulatory mechanism between SCAs.
Collapse
Affiliation(s)
- Mette Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Genetics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Simon Chang
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Steen Bønlykke Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Katrine Meyer Lauritsen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Mette Glavind Bülow Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Christian Trolle
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
13
|
Gravholt CH, Ferlin A, Gromoll J, Juul A, Raznahan A, van Rijn S, Rogol AD, Skakkebæk A, Tartaglia N, Swaab H. New developments and future trajectories in supernumerary sex chromosome abnormalities: a summary of the 2022 3rd International Workshop on Klinefelter Syndrome, Trisomy X, and XYY. Endocr Connect 2023; 12:e220500. [PMID: 36598290 PMCID: PMC9986408 DOI: 10.1530/ec-22-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The 3rd International Workshop on Klinefelter Syndrome, Trisomy X, and 47,XYY syndrome was held in Leiden, the Netherlands, on September 12-14, 2022. Here, we review new data presented at the workshop and discuss scientific and clinical trajectories. We focus on shortcomings in knowledge and therefore point out future areas for research. We focus on the genetics and genomics of supernumerary sex chromosome syndromes with new data being presented. Most knowledge centre specifically on Klinefelter syndrome, where aspects on testosterone deficiency and the relation to bone, muscle and fat were discussed, as was infertility and the treatment thereof. Both trisomy X and 47,XYY syndrome are frequently affected by infertility. Transitioning of males with Klinefelter syndrome was addressed, as this seemingly simple process in practise is often difficult. It is now realized that neurocognitive changes are pervasive in all supernumerary sex chromosome syndromes, which were extensively discussed. New intervention projects were also described, and exciting new data concerning these were presented. Advocacy organizations were present, describing the enormous burden carried by parents when having to explain their child's specific syndrome to most professionals whenever in contact with health care and education systems. It was also pointed out that most countries do not have health care systems that diagnose patients with supernumerary sex chromosome syndromes, thus pinpointing a clear deficiency in the current genetic testing and care models. At the end of the workshop, a roadmap towards the development of new international clinical care guidelines for Klinefelter syndrome was decided.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Joerg Gromoll
- Centre of Reproductive Medicine and Andrology, Münster, Germany
| | - Anders Juul
- Department of Growth and Reproduction Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophie van Rijn
- Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands
| | - Alan D Rogol
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Nicole Tartaglia
- Department of Pediatrics, Developmental Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hanna Swaab
- Clinical Neurodevelopmental Sciences, Leiden University, Leiden, The Netherlands and TRIXY Center of Expertise, Leiden University Treatment and Expertise Centre (LUBEC), Leiden, The Netherlands
| |
Collapse
|
14
|
Bedei I, Gloning KP, Joyeux L, Meyer-Wittkopf M, Willner D, Krapp M, Scharf A, Degenhardt J, Heling KS, Kozlowski P, Trautmann K, Jahns KM, Geipel A, Tekesin I, Elsässer M, Wilhelm L, Gottschalk I, Baumüller JE, Birdir C, Schröer A, Zöllner F, Wolter A, Schenk J, Gehrke T, Spaeth A, Axt-Fliedner R. Turner syndrome-omphalocele association: Incidence, karyotype, phenotype and fetal outcome. Prenat Diagn 2023; 43:183-191. [PMID: 36600414 DOI: 10.1002/pd.6302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Omphalocele is known to be associated with genetic anomalies like trisomy 13, 18 and Beckwith-Wiedemann syndrome, but not with Turner syndrome (TS). Our aim was to assess the incidence of omphalocele in fetuses with TS, the phenotype of this association with other anomalies, their karyotype, and the fetal outcomes. METHOD Retrospective multicenter study of fetuses with confirmed diagnosis of TS. Data were extracted from a detailed questionnaire sent to specialists in prenatal ultrasound. RESULTS 680 fetuses with TS were included in this analysis. Incidence of small omphalocele in fetuses diagnosed ≥12 weeks was 3.1%. Including fetuses diagnosed before 12 weeks, it was 5.1%. 97.1% (34/35) of the affected fetuses had one or more associated anomalies including increased nuchal translucency (≥3 mm) and/or cystic hygroma (94.3%), hydrops/skin edema (71.1%), and cardiac anomalies (40%). The karyotype was 45,X in all fetuses. Fetal outcomes were poor with only 1 fetus born alive. CONCLUSION TS with 45,X karyotype but not with X chromosome variants is associated with small omphalocele. Most of these fetuses have associated anomalies and a poor prognosis. Our data suggest an association of TS with omphalocele, which is evident from the first trimester.
Collapse
Affiliation(s)
- Ivonne Bedei
- Department of Prenatal Diagnosis and Fetal Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Luc Joyeux
- Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Fetal Center, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,MyFetUZ Fetal Research Center, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | | | - Daria Willner
- Center for Prenatal Medicine and Human Genetics, Hamburg, Germany
| | - Martin Krapp
- Center for Prenatal Medicine on Elbe, Hamburg, Germany
| | | | | | - Kai-Sven Heling
- Center of Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - Peter Kozlowski
- Praenatal.de, Prenatal Medicine and Genetics Düsseldorf, Düsseldorf, Germany
| | | | - Kai M Jahns
- Department of Internal Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Annegret Geipel
- Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | | | - Michael Elsässer
- Department of Gynecology and Obstetrics, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ingo Gottschalk
- Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University of Cologne, Cologne, Germany
| | | | - Cahit Birdir
- Department of Obstetrics and Gynecology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - Felix Zöllner
- Department of Prenatal Diagnosis and Fetal Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Aline Wolter
- Department of Prenatal Diagnosis and Fetal Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Johanna Schenk
- Department of Prenatal Diagnosis and Fetal Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Tascha Gehrke
- Department of Prenatal Diagnosis and Fetal Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Alicia Spaeth
- Department of Prenatal Diagnosis and Fetal Therapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Roland Axt-Fliedner
- Department of Prenatal Diagnosis and Fetal Therapy, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
15
|
Bollig KJ, Mainigi M, Senapati S, Lin AE, Levitsky LL, Bamba V. Turner syndrome: fertility counselling in childhood and through the reproductive lifespan. Curr Opin Endocrinol Diabetes Obes 2023; 30:16-26. [PMID: 36437755 DOI: 10.1097/med.0000000000000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The potential for fertility in Turner syndrome has improved in recent years. Understanding of associated risks and approaches is important for the care of girls and women with this condition. This review focuses on reproductive health, fertility options and appropriate counselling for women with Turner syndrome and their families. RECENT FINDINGS Women with Turner syndrome have rapidly declining ovarian function beginning in utero . Therefore, counselling regarding fertility concerns should begin at a young age and involve discussion of options, including ovarian tissue cryopreservation, oocyte preservation and use of nonautologous oocytes. Clinical guidance on fertility management and pregnancy risk assessment based on karyotype, associated comorbidities and fertility is still not fully data driven. Realistic expectations regarding reproductive options and associated outcomes as well as the need for multidisciplinary follow-up during pregnancy are crucial to the ethical and safe care of these patients. SUMMARY Fertility care in women with Turner syndrome is evolving as current management techniques improve and new approaches are validated. Early counselling and active management of fertility preservation is critical to ensure positive and well tolerated reproductive outcomes.
Collapse
Affiliation(s)
- Kassie J Bollig
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suneeta Senapati
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General for Children, Harvard Medical School, Boston, MA
| | - Vaneeta Bamba
- Division of Endocrinology, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|