1
|
Yang H, Xu C, Song J, Li J, Zhang C, Teng C, Ma K, Xie F. Toxicokinetic and liver proteomic study of the Chinese rare minnow (Gobiocypris rarus) exposed to F-53B. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107312. [PMID: 40107147 DOI: 10.1016/j.aquatox.2025.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Perfluorooctane sulfonic acid (PFOS) and its alternative 6:2 chlorinated polyfluoroethersulfonate (6:2 Cl-PFESA, also known as F-53B), are frequently detected in a variety of environmental and human samples. These substances have been associated with hepatotoxic effects, including disorders in lipid metabolism and oxidative stress. However, the molecular mechanisms underlying the causal relationship between exposure to F-53B and hepatotoxicity remain inadequately understood. This study investigated the toxicokinetics and mechanisms of hepatotoxicity associated with prolonged exposure to F-53B in adult Chinese rare minnows. Specifically, 5-month-old adult Chinese rare minnow was exposed to concentrations of 10 μg/L and 200 μg/L of F-53B for a duration of 28 days for bioaccumulation assessment, followed by a 14-day period for metabolic evaluation. The findings indicated that the bioaccumulation of F-53B in the tissues was positively correlated with the exposure concentrations. The logarithmic bioconcentration factor (Log BCF28d) was determined to be 2.67 ± 0.02 for the low concentration group and 2.27 ± 0.01 for the high concentration group. The calculated half-lives (t1/2) were 18.50 ± 1.67 days and 21.38 ± 0.31 days for the respective concentration groups. F-53B protein exhibited a distinct tissue-specific distribution in adult Chinese rare minnow, with the following order of enrichment: Blood > Liver > Gonad > Gill > Intestine > Brain > Muscle. F-53B was primarily concentrated in the blood and liver, where the protein content was significantly higher. Exposure to F-53B for 28 days significantly elevated biochemical levels associated with lipid metabolism and increased the activities of the enzymes FAS, PPARα, and ACC in the liver. This exposure also resulted in impairment of the hepatic oxidative system in the Chinese rare minnow, with F-53B significantly reducing most of the measured markers related to oxidative stress (e.g., GSH, SOD, CAT, and MDA). Proteomic analysis indicated that the toxicity of F-53B regulates the expression of proteins across several functional classes. Based on the functional information of the differential proteins provided in UniProt and KEGG, they were categorized into five main categories: Cellular Processes, Environmental Information Processing, Genetic Information Processing, Metabolism, and Organismal Systems. This study indicate that F-53B is bioaccumulative and persistent in Chinese rare minnow, and can further induce oxidative stress and lipid metabolism disorders. Combined with proteomic research methods, the toxicological effects of F-53B on Chinese rare minnow can be better explained.
Collapse
Affiliation(s)
- Hongbo Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Chan Xu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China
| | - Jieyu Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China
| | - Jin Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China
| | - Chan Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Chunli Teng
- Guizhou Jiandee Technology Co., Ltd, Guiyang 550016, China
| | - Kai Ma
- Guizhou Academy of Testing and Analysis, Guiyang 550014, China
| | - Feng Xie
- Guizhou Academy of Testing and Analysis, Guiyang 550014, China; Department of Food science and Engineering Moutai Institute, Renhuai 564507, China
| |
Collapse
|
2
|
Wang Y, Wang J. The Dynamic Changes of COL11A1 Expression During the Carcinogenesis and Development of Breast Cancer and as a Candidate Diagnostic and Prognostic Marker. Breast J 2025; 2025:7861864. [PMID: 39845732 PMCID: PMC11752105 DOI: 10.1155/tbj/7861864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/12/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Purpose: Collagen type XI alpha 1 (COL11A1), a critical member of the collagen superfamily, is essential for tissue structure and integrity. This study aimed to validate previously identified variations in COL11A1 expression during breast cancer carcinogenesis and progression, as well as elucidate their clinical implications. Methods: COL11A1 mRNA expression levels were assessed using real-time reverse transcription-PCR (RT-PCR) in 30 pairs of normal breast tissue and primary breast cancer, 30 pairs of primary breast cancer and lymph node metastases, 30 benign tumors, and 107 primary breast cancers. COL11A1 protein expression was evaluated by Western blot in six matched trios of normal tissue, primary cancer, and lymph node metastasis. Results: COL11A1 mRNA levels were significantly higher in primary breast cancer tissues (n = 30) than in adjacent normal breast tissues (p < 0.001). Conversely, lymph node metastases (n = 30) showed significantly lower COL11A1 mRNA levels compared to their primary breast cancer counterparts (p=0.005). In a larger cohort, primary breast cancers (n = 107) had significantly elevated COL11A1 mRNA levels relative to adjacent normal tissues (n = 30) and benign tumors (n = 30) (p < 0.001). Benign tumors also demonstrated higher levels compared to normal tissues (p=0.012). The protein expression patterns were consistent with the mRNA findings. Receiver operating characteristic (ROC) curve analysis confirmed the diagnostic relevance of COL11A1 expression levels. Significant associations were found between COL11A1 mRNA levels and clinical parameters including lymph node involvement (p=0.046), clinical stage (p=0.004), and progesterone receptor status (p=0.048). Overexpression of COL11A1 was correlated with poor prognosis. Conclusions: COL11A1 expression varies during breast tumor initiation and progression, with elevated levels linked to worse prognoses. These findings underscore COL11A1's potential as a biomarker in breast cancer, suggesting its assessment could enhance diagnostic and prognostic strategies for more personalized patient management.
Collapse
Affiliation(s)
- Yuli Wang
- Medical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
4
|
Hulahan TS, Angel PM. From ductal carcinoma in situ to invasive breast cancer: the prognostic value of the extracellular microenvironment. J Exp Clin Cancer Res 2024; 43:329. [PMID: 39716322 DOI: 10.1186/s13046-024-03236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) is a noninvasive breast disease that variably progresses to invasive breast cancer (IBC). Given the unpredictability of this progression, most DCIS patients are aggressively managed similar to IBC patients. Undoubtedly, this treatment paradigm places many DCIS patients at risk of overtreatment and its significant consequences. Historically, prognostic modeling has included the assessment of clinicopathological features and genomic markers. Although these provide valuable insights into tumor biology, they remain insufficient to predict which DCIS patients will progress to IBC. Contemporary work has begun to focus on the microenvironment surrounding the ductal cells for molecular patterns that might predict progression. In this review, extracellular microenvironment alterations occurring with the malignant transformation from DCIS to IBC are detailed. Not only do changes in collagen abundance, organization, and localization mediate the transition to IBC, but also the discrete post-translational regulation of collagen fibers is understood to promote invasion. Other extracellular matrix proteins, such as matrix metalloproteases, decorin, and tenascin C, have been characterized for their role in invasive transformation and further demonstrate the prognostic value of the extracellular matrix. Importantly, these extracellular matrix proteins influence immune cells and fibroblasts toward pro-tumorigenic phenotypes. Thus, the progressive changes in the extracellular microenvironment play a key role in invasion and provide promise for prognostic development.
Collapse
Affiliation(s)
- Taylor S Hulahan
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi M Angel
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
5
|
Wan X, Deng Q, Chen A, Zhang X, Yang W. Bioinformatics analysis and experimental validation of the oncogenic role of COL11A1 in pan-cancer. 3 Biotech 2024; 14:290. [PMID: 39507058 PMCID: PMC11534945 DOI: 10.1007/s13205-024-04133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
The intricate expression patterns and oncogenic attributes of COL11A1 across different cancer types remain largely elusive. This study used several public databases (TCGA, GTEx, and CCLE) to investigate the pan-cancer landscape of COL11A1 expression, its prognostic implications, interplay with the immune microenvironment, and enriched signaling cascades. Concurrently, western blot analyses were performed to verify COL11A1 expression in lung adenocarcinoma (LUAD) cell lines and clinical samples. In addition, COL11A1 knockout cell lines were generated to scrutinize the functional consequences of COL11AI expression on cancer cell behavior by use MTT, colony formation, and scratch wound healing assays. A comprehensive database investigation revealed that COL11A1 was upregulated in a majority of tumor tissues and its expression was highly correlated with a patient's prognosis. Notably, genetic alterations in COL11A1 predominantly occurred as mutations, while its DNA methylation status inversely mirrored gene expression levels across multiple promoter regions. Our findings suggest that COL11A1 helps to modulate the tumor immune landscape and potentially acts through the epithelial-mesenchymal transition (EMT) pathway to exert its oncogenic function. Western blot analyses further substantiated the specific upregulation of COL11A1 in LUAD cell lines and tissues, suggesting a close association with the EMT process. Ablation of COL11A1 in cancer cells significantly reduced their proliferative, clonogenic, and migratory abilities, underscoring the functional significance of COL11A1 in tumor cell behavior. Collectively, this research revealed the prevalent overexpression of COL11A1 in pan-cancer tissues, its profound prognostic and microenvironmental correlations, and the mechanistic underpinnings of its tumor-promoting effects as mediated via EMT signaling. Our findings suggest that COL11A1 could serve as a prognostic and diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xiaofeng Wan
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Qingmei Deng
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Anling Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xinhui Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Wulin Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| |
Collapse
|
6
|
Fu C, Duan S, Zhou X, Meng Y, Chen X. Overexpression of COL11A1 confers tamoxifen resistance in breast cancer. NPJ Breast Cancer 2024; 10:38. [PMID: 38806505 PMCID: PMC11133424 DOI: 10.1038/s41523-024-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy and benefits from endocrine agents such as tamoxifen. However, the development of drug resistance in cancerous cells often leads to recurrence, thus limiting the therapeutic benefit. Identification of potential biomarkers that can predict response to tamoxifen and recognize patients who will clinically benefit from this therapy is urgently needed. In this study, we report that high collagen type XI alpha 1 (COL11A1) expression was associated with poor therapeutic response and prognosis in breast cancer patients treated with tamoxifen. To confirm the role of COL11A1 in the development of tamoxifen resistance, we established MCF-7/COL11A1 and T47D/COL11A1 cell lines, which stably expressed COL11A1. Compared with parental MCF-7 and T47D, MCF-7/COL11A1 and T47D/COL11A1 cells were more resistant to 4-OHT-induced growth inhibition. Moreover, the level of COL11A1 expression was upregulated in tamoxifen-resistant MCF-7/TamR and T47D/TamR cell lines, and depletion of COL11A1 markedly sensitized the cells to 4-OHT in vitro and in vivo. Interestingly, the level of estrogen receptor α (ERα) expression was elevated, probably due to the increased COL11A1 in TamR cells. In addition, knockdown of COL11A1 decreased the expression of ERα and its downstream target genes. Overall, our findings suggest that overexpressed COL11A1 contributes to tamoxifen resistance, and targeting COL11A1 holds great promise for reversing endocrine resistance.
Collapse
Affiliation(s)
- Chengxiao Fu
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Pharmacy, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shan Duan
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoming Zhou
- Institute of Drug Clinical Trial, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingcai Meng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xisha Chen
- Cancer Research Institute, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Gatenby RA, Luddy KA, Teer JK, Berglund A, Freischel AR, Carr RM, Lam AE, Pienta KJ, Amend SR, Austin RH, Hammarlund EU, Cleveland JL, Tsai KY, Brown JS. Lung adenocarcinomas without driver genes converge to common adaptive strategies through diverse genetic, epigenetic, and niche construction evolutionary pathways. Med Oncol 2024; 41:135. [PMID: 38704802 PMCID: PMC11070398 DOI: 10.1007/s12032-024-02344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/21/2024] [Indexed: 05/07/2024]
Abstract
Somatic evolution selects cancer cell phenotypes that maximize survival and proliferation in dynamic environments. Although cancer cells are molecularly heterogeneous, we hypothesized convergent adaptive strategies to common host selection forces can be inferred from patterns of epigenetic and genetic evolutionary selection in similar tumors. We systematically investigated gene mutations and expression changes in lung adenocarcinomas with no common driver genes (n = 313). Although 13,461 genes were mutated in at least one sample, only 376 non-synonymous mutations evidenced positive evolutionary selection with conservation of 224 genes, while 1736 and 2430 genes exhibited ≥ two-fold increased and ≥ 50% decreased expression, respectively. Mutations under positive selection are more frequent in genes with significantly altered expression suggesting they often "hardwire" pre-existing epigenetically driven adaptations. Conserved genes averaged 16-fold higher expression in normal lung tissue compared to those with selected mutations demonstrating pathways necessary for both normal cell function and optimal cancer cell fitness. The convergent LUAD phenotype exhibits loss of differentiated functions and cell-cell interactions governing tissue organization. Conservation with increased expression is found in genes associated with cell cycle, DNA repair, p53 pathway, epigenetic modifiers, and glucose metabolism. No canonical driver gene pathways exhibit strong positive selection, but extensive down-regulation of membrane ion channels suggests decreased transmembrane potential may generate persistent proliferative signals. NCD LUADs perform niche construction generating a stiff, immunosuppressive microenvironment through selection of specific collagens and proteases. NCD LUADs evolve to a convergent phenotype through a network of interconnected genetic, epigenetic, and ecological pathways.
Collapse
Affiliation(s)
- Robert A Gatenby
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Kimberly A Luddy
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jamie K Teer
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, USA
| | - Anders Berglund
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Bioinformatics, Moffitt Cancer Center, Tampa, USA
| | | | - Ryan M Carr
- Department of Oncology, Mayo Clinic, Rochester, USA
| | | | - Kenneth J Pienta
- Cancer Ecology Program, Johns Hopkins University, Baltimore, USA
| | - Sarah R Amend
- Cancer Ecology Program, Johns Hopkins University, Baltimore, USA
| | | | - Emma U Hammarlund
- Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - John L Cleveland
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Kenneth Y Tsai
- Departments of Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, USA
| | - Joel S Brown
- Department of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
8
|
Li X, Jin Y, Xue J. Unveiling Collagen's Role in Breast Cancer: Insights into Expression Patterns, Functions and Clinical Implications. Int J Gen Med 2024; 17:1773-1787. [PMID: 38711825 PMCID: PMC11073151 DOI: 10.2147/ijgm.s463649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Collagen, the predominant protein constituent of the mammalian extracellular matrix (ECM), comprises a diverse family of 28 members (I-XXVIII). Beyond its structural significance, collagen is implicated in various diseases or cancers, notably breast cancer, where it influences crucial cellular processes including proliferation, metastasis, apoptosis, and drug resistance, intricately shaping cancer progression and prognosis. In breast cancer, distinct collagens exhibit differential expression profiles, with some showing heightened or diminished levels in cancerous tissues or cells compared to normal counterparts, suggesting specific and pivotal biological functions. In this review, we meticulously analyze the expression of individual collagen members in breast cancer, utilizing Transcripts Per Million (TPM) data sourced from the GEPIA2 database. Through this analysis, we identify collagens that deviate from normal expression patterns in breast cancer, providing a comprehensive overview of their expression dynamics, functional roles, and underlying mechanisms. Our findings shed light on recent advancements in understanding the intricate interplay between these aberrantly expressed collagens and breast cancer. This exploration aims to offer valuable insights for the identification of potential biomarkers and therapeutic targets, thereby advancing the prospects of more effective interventions in breast cancer treatment.
Collapse
Affiliation(s)
- Xia Li
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou, People’s Republic of China
| |
Collapse
|
9
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
10
|
Liu J, Xu X, Li Y, Xu J, Zhao R, Liu S, Wu J, Zhang L, Zhang B. Bortezomib-loaded mixed micelles realize a "three-in-one" effect for enhanced breast cancer treatment. Biomater Sci 2023. [PMID: 37306225 DOI: 10.1039/d3bm00254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Comprehensively regulating the TME is now regarded as a promising approach for cancer treatment. Herein, a novel "three-in-one" effect is presented for simultaneously killing tumor cells, inhibiting the EMT of CAFs, and improving immune responses. In this study, bortezomib (BTZ) is selected for the treatment of breast cancer; it has multiple pharmacological mechanisms for killing tumor cells through the NF-κB signaling pathway, inhibiting the activity of CAFs by activating caspase-3, and enhancing the function of CD8+ T cells by regulating the expression of immune-stimulating factors. To improve the druggability of BTZ in solid tumors, BTZ-loaded lipid/glycocholic acid mixed micelles (BTZ-LGs) were prepared to verify the "three-in-one" effect in killing tumor cells, inhibiting CAFs, and improving immune responses. In the present work, BTZ-LGs were verified to show enhanced in vitro cytotoxicity in both 4T1 cells and 4T1/NIH3T3 co-cultured cells, as well as a superior in vivo treatment effect in different tumor-bearing mouse models. Additionally, BTZ-LGs could regulate the expression of α-SMA, caspase-3, E-cadherin, and N-cadherin, indicating their good inhibiting ability on both tumor cells and CAFs. More importantly, immunological analysis revealed that BTZ-LGs promoted the expression of the immunostimulatory factor IL-2 in tumor tissues, activated anti-tumor T cells, and overcame tumor-induced CD8+ T cell dysfunction. All these findings suggest that BTZ-LGs can achieve a "three-in-one" effect in terms of killing tumor cells, suppressing CAFs, and improving immune responses. This simple and multi-effective therapeutic strategy offers a promising approach for cancer therapy.
Collapse
Affiliation(s)
- Jianhao Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, P.R. China.
| | - Xiaoman Xu
- School of Pharmacy, Weifang Medical University, Weifang 261053, P.R. China.
| | - Yanying Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jingxia Xu
- School of Pharmacy, Weifang Medical University, Weifang 261053, P.R. China.
| | - Ruogang Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, P.R. China.
| | - Siwei Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, 261053, P.R. China
| | - Li Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, P.R. China.
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, P.R. China.
| |
Collapse
|
11
|
Chen G, Zhang K, Liang Z, Zhang S, Dai Y, Cong Y, Qiao G. Integrated transcriptome analysis identifies APPL1/RPS6KB2/GALK1 as immune-related metastasis factors in breast cancer. Open Med (Wars) 2023; 18:20230732. [PMID: 37273920 PMCID: PMC10238809 DOI: 10.1515/med-2023-0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023] Open
Abstract
The aim of this study is to investigate the prognostic immune-related factors in breast cancer (BC) metastasis. The gene expression chip GSE159956 was downloaded from the gene expression omnibus database. Differentially expressed genes (DEGs) were selected using GEO2R online tools based on lymph node and metastasis status. The intersected survival-associated DEGs were screened from the Kaplan-Meier curve. Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) annotation analyses were performed to determine the survival-associated DEGs. Immune-related prognostic factors were screened based on immune infiltration. The screened prognostic factors were verified by the Cancer Genome Atlas (TCGA) database and single-sample gene set enrichment analysis (ssGSEA). As a result, twenty-eight upregulated and three downregulated genes were generated by the survival analysis. The enriched GO and KEGG pathways were mostly correlated with "regulation of cellular amino acid metabolic process," "proteasome complex," "endopeptidase activity," and "proteasome." Six of 19 (17 upregulated and 2 downregulated) immune-related prognostic factors were verified by the TCGA database. Four immune-related factors were obtained after ssGSEA, and three significant immune-related factors were selected after univariate and multivariate analyses. Based on the risk score receiver operating characteristic, the three immune-related prognosis factors could be potential biomarkers of BC metastasis. In conclusion, APPL1, RPS6KB2, and GALK1 may play a pivotal role as potential biomarkers for prediction of BC metastasis.
Collapse
Affiliation(s)
- Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Kun Zhang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Zhi Liang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Song Zhang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264001, P.R. China
| | - Yuanping Dai
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou545001, P.R. China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yudong Road, Yantai, Shandong 264001, P.R. China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yudong Road, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
12
|
Xu A, Xu XN, Luo Z, Huang X, Gong RQ, Fu DY. Identification of prognostic cancer-associated fibroblast markers in luminal breast cancer using weighted gene co-expression network analysis. Front Oncol 2023; 13:1191660. [PMID: 37207166 PMCID: PMC10191114 DOI: 10.3389/fonc.2023.1191660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression and are known to mediate endocrine and chemotherapy resistance through paracrine signaling. Additionally, they directly influence the expression and growth dependence of ER in Luminal breast cancer (LBC). This study aims to investigate stromal CAF-related factors and develop a CAF-related classifier to predict the prognosis and therapeutic outcomes in LBC. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to obtain mRNA expression and clinical information from 694 and 101 LBC samples, respectively. CAF infiltrations were determined by estimating the proportion of immune and cancer cells (EPIC) method, while stromal scores were calculated using the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Weighted gene co-expression network analysis (WGCNA) was used to identify stromal CAF-related genes. A CAF risk signature was developed through univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. The Spearman test was used to evaluate the correlation between CAF risk score, CAF markers, and CAF infiltrations estimated through EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms. The TIDE algorithm was further utilized to assess the response to immunotherapy. Additionally, Gene set enrichment analysis (GSEA) was applied to elucidate the molecular mechanisms underlying the findings. Results We constructed a 5-gene prognostic model consisting of RIN2, THBS1, IL1R1, RAB31, and COL11A1 for CAF. Using the median CAF risk score as the cutoff, we classified LBC patients into high- and low-CAF-risk groups and found that those in the high-risk group had a significantly worse prognosis. Spearman correlation analyses demonstrated a strong positive correlation between the CAF risk score and stromal and CAF infiltrations, with the five model genes showing positive correlations with CAF markers. In addition, the TIDE analysis revealed that high-CAF-risk patients were less likely to respond to immunotherapy. Gene set enrichment analysis (GSEA) identified significant enrichment of ECM receptor interaction, regulation of actin cytoskeleton, epithelial-mesenchymal transition (EMT), and TGF-β signaling pathway gene sets in the high-CAF-risk group patients. Conclusion The five-gene prognostic CAF signature presented in this study was not only reliable for predicting prognosis in LBC patients, but it was also effective in estimating clinical immunotherapy response. These findings have significant clinical implications, as the signature may guide tailored anti-CAF therapy in combination with immunotherapy for LBC patients.
Collapse
Affiliation(s)
- An Xu
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang-Nan Xu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Zhou Luo
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Xiao Huang
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Rong-Quan Gong
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Yuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- *Correspondence: De-Yuan Fu,
| |
Collapse
|
13
|
Necula L, Matei L, Dragu D, Pitica I, Neagu A, Bleotu C, Diaconu CC, Chivu-Economescu M. Collagen Family as Promising Biomarkers and Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:12415. [PMID: 36293285 PMCID: PMC9604126 DOI: 10.3390/ijms232012415] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in cancer detection and therapy, it has been estimated that the incidence of cancers will increase, while the mortality rate will continue to remain high, a fact explained by the large number of patients diagnosed in advanced stages when therapy is often useless. Therefore, it is necessary to invest knowledge and resources in the development of new non-invasive biomarkers for the early detection of cancer and new therapeutic targets for better health management. In this review, we provided an overview on the collagen family as promising biomarkers and on how they may be exploited as therapeutic targets in cancer. The collagen family tridimensional structure, organization, and functions are very complex, being in a tight relationship with the extracellular matrix, tumor, and immune microenvironment. Moreover, accumulating evidence underlines the role of collagens in promoting tumor growth and creating a permissive tumor microenvironment for metastatic dissemination. Knowledge of the molecular basis of these interactions may help in cancer diagnosis and prognosis, in overcoming chemoresistance, and in providing new targets for cancer therapies.
Collapse
Affiliation(s)
- Laura Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Denisa Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Ioana Pitica
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Ana Neagu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Carmen C. Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| |
Collapse
|