1
|
Cho C, Kim B, Kim DS, Hwang MY, Shim I, Song M, Lee YC, Jung SH, Cho SK, Park WY, Myung W, Kim BJ, Do R, Choi HK, Merriman TR, Kim YJ, Won HH. Large-scale cross-ancestry genome-wide meta-analysis of serum urate. Nat Commun 2024; 15:3441. [PMID: 38658550 PMCID: PMC11043400 DOI: 10.1038/s41467-024-47805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Hyperuricemia is an essential causal risk factor for gout and is associated with cardiometabolic diseases. Given the limited contribution of East Asian ancestry to genome-wide association studies of serum urate, the genetic architecture of serum urate requires exploration. A large-scale cross-ancestry genome-wide association meta-analysis of 1,029,323 individuals and ancestry-specific meta-analysis identifies a total of 351 loci, including 17 previously unreported loci. The genetic architecture of serum urate control is similar between European and East Asian populations. A transcriptome-wide association study, enrichment analysis, and colocalization analysis in relevant tissues identify candidate serum urate-associated genes, including CTBP1, SKIV2L, and WWP2. A phenome-wide association study using polygenic risk scores identifies serum urate-correlated diseases including heart failure and hypertension. Mendelian randomization and mediation analyses show that serum urate-associated genes might have a causal relationship with serum urate-correlated diseases via mediation effects. This study elucidates our understanding of the genetic architecture of serum urate control.
Collapse
Affiliation(s)
- Chamlee Cho
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Beomsu Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Dan Say Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Injeong Shim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Minku Song
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Yeong Chan Lee
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sung Kweon Cho
- Department of Pharmacology, Ajou University School of Medicine (AUSOM), Suwon, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hyon K Choi
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tony R Merriman
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea.
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea.
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Szalanczy AM, Fitzpatrick M, Beeson A, Bui T, Dyson C, Eller S, Landry J, Scott C, Grzybowski M, Klotz J, Geurts AM, Weiner JL, Redei EE, Solberg Woods LC. Chronic stress from adolescence to adulthood increases adiposity and anxiety in rats with decreased expression of Krtcap3. Front Genet 2024; 14:1247232. [PMID: 38323241 PMCID: PMC10844407 DOI: 10.3389/fgene.2023.1247232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as a novel adiposity gene, but subsequently found that its impact on adiposity may depend on environmental stress. To more thoroughly understand the connection between Krtcap3, adiposity, and stress, we exposed wild-type (WT) and Krtcap3 knock-out (KO) rats to chronic stress then measured adiposity and behavioral outcomes. We found that KO rats displayed lower basal stress than WT rats under control conditions and exhibited metabolic and behavioral responses to chronic stress exposure. Specifically, stress-exposed KO rats gained more weight, consumed more food when socially isolated, and displayed more anxiety-like behaviors relative to control KO rats. Meanwhile, there were minimal differences between control and stressed WT rats. At study conclusion stress-exposed KO rats had increased corticosterone (CORT) relative to control KO rats with no differences between WT rats. In addition, KO rats, independent of prior stress exposure, had an increased CORT response to removal of their cage-mate (psychosocial stress), which was only seen in WT rats when exposed to chronic stress. Finally, we found differences in expression of the glucocorticoid receptor, Nr3c1, in the pituitary and colon between control and stress-exposed KO rats that were not present in WT rats. These data support that Krtcap3 expression affects stress response, potentially via interactions with Nr3c1, with downstream effects on adiposity and behavior. Future work is necessary to more thoroughly understand the role of Krtcap3 in the stress response.
Collapse
Affiliation(s)
- Alexandria M. Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Mackenzie Fitzpatrick
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Angela Beeson
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Trangdai Bui
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Dyson
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Seth Eller
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Julia Landry
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Scott
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeff L. Weiner
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
3
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with Krtcap3. Physiol Genomics 2023; 55:452-467. [PMID: 37458463 PMCID: PMC10642928 DOI: 10.1152/physiolgenomics.00019.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| |
Collapse
|
4
|
Górska A, Urbanowicz M, Grochowalski Ł, Seweryn M, Sobalska-Kwapis M, Wojdacz T, Lange M, Gruchała-Niedoszytko M, Jarczak J, Strapagiel D, Górska-Ponikowska M, Pelikant-Małecka I, Kalinowski L, Nedoszytko B, Gutowska-Owsiak D, Niedoszytko M. Genome-Wide DNA Methylation and Gene Expression in Patients with Indolent Systemic Mastocytosis. Int J Mol Sci 2023; 24:13910. [PMID: 37762215 PMCID: PMC10530743 DOI: 10.3390/ijms241813910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Mastocytosis is a clinically heterogenous, usually acquired disease of the mast cells with a survival time that depends on the time of onset. It ranges from skin-limited to systemic disease, including indolent and more aggressive variants. The presence of the oncogenic KIT p. D816V gene somatic mutation is a crucial element in the pathogenesis. However, further epigenetic regulation may also affect the expression of genes that are relevant to the pathology. Epigenetic alterations are responsible for regulating the expression of genes that do not modify the DNA sequence. In general, it is accepted that DNA methylation inhibits the binding of transcription factors, thereby down-regulating gene expression. However, so far, little is known about the epigenetic factors leading to the clinical onset of mastocytosis. Therefore, it is essential to identify possible epigenetic predictors, indicators of disease progression, and their link to the clinical picture to establish appropriate management and a therapeutic strategy. The aim of this study was to analyze genome-wide methylation profiles to identify differentially methylated regions (DMRs) in patients with mastocytosis compared to healthy individuals, as well as the genes located in those regulatory regions. Genome-wide DNA methylation profiling was performed in peripheral blood collected from 80 adult patients with indolent systemic mastocytosis (ISM), the most prevalent subvariant of mastocytosis, and 40 healthy adult volunteers. A total of 117 DNA samples met the criteria for the bisulfide conversion step and microarray analysis. Genome-wide DNA methylation analysis was performed using a MethylationEPIC BeadChip kit. Further analysis was focused on the genomic regions rather than individual CpG sites. Co-methylated regions (CMRs) were assigned via the CoMeBack method. To identify DMRs between the groups, a linear regression model with age as the covariate on CMRs was performed using Limma. Using the available data for cases only, an association analysis was performed between methylation status and tryptase levels, as well as the context of allergy, and anaphylaxis. KEGG pathway mapping was used to identify genes differentially expressed in anaphylaxis. Based on the DNA methylation results, the expression of 18 genes was then analyzed via real-time PCR in 20 patients with mastocytosis and 20 healthy adults. A comparison of the genome-wide DNA methylation profile between the mastocytosis patients and healthy controls revealed significant differences in the methylation levels of 85 selected CMRs. Among those, the most intriguing CMRs are 31 genes located within the regulatory regions. In addition, among the 10 CMRs located in the promoter regions, 4 and 6 regions were found to be either hypo- or hypermethylated, respectively. Importantly, three oncogenes-FOXQ1, TWIST1, and ERG-were identified as differentially methylated in mastocytosis patients, for the first time. Functional annotation revealed the most important biological processes in which the differentially methylated genes were involved as transcription, multicellular development, and signal transduction. The biological process related to histone H2A monoubiquitination (GO:0035518) was found to be enriched in association with higher tryptase levels, which may be associated with more aberrant mast cells and, therefore, more atypical mast cell disease. The signal in the BAIAP2 gene was detected in the context of anaphylaxis, but no significant differential methylation was found in the context of allergy. Furthermore, increased expression of genes encoding integral membrane components (GRM2 and KRTCAP3) was found in mastocytosis patients. This study confirms that patients with mastocytosis differ significantly in terms of methylation levels in selected CMRs of genes involved in specific molecular processes. The results of gene expression profiling indicate the increased expression of genes belonging to the integral component of the membrane in mastocytosis patients (GRM2 and KRTCAP3). Further work is warranted, especially in relation to the disease subvariants, to identify links between the methylation status and the symptoms and novel therapeutic targets.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Allergology, Medical University of Gdansk, 7 Dębinki Street, 80-210 Gdansk, Poland;
| | - Maria Urbanowicz
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Łukasz Grochowalski
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Michał Seweryn
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Tomasz Wojdacz
- Independent Clinical Epigenetics Laboratory, Pomeranian Medical University, 71-281 Szczecin, Poland;
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.L.); (B.N.)
| | | | - Justyna Jarczak
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, University of Lodz, 90-237 Lodz, Poland (M.S.); (M.S.-K.); (D.S.)
| | | | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics–Biobank Fahrenheit, Medical University of Gdansk, 80-210 Gdansk, Poland; (I.P.-M.); (L.K.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics–Biobank Fahrenheit, Medical University of Gdansk, 80-210 Gdansk, Poland; (I.P.-M.); (L.K.)
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.L.); (B.N.)
- Invicta Fertility and Reproductive Center, Molecular Laboratory, 81-740 Sopot, Poland
| | - Danuta Gutowska-Owsiak
- Laboratory of Experimental and Translational Immunology, University of Gdansk, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 7 Dębinki Street, 80-210 Gdansk, Poland;
| |
Collapse
|
5
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in Environmental Stress over COVID-19 Pandemic Likely Contributed to Failure to Replicate Adiposity Phenotype Associated with Krtcap3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532439. [PMID: 36993361 PMCID: PMC10055176 DOI: 10.1101/2023.03.15.532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| |
Collapse
|
6
|
Nikpay M. Genome-wide search identified DNA methylation sites that regulate the metabolome. Front Genet 2023; 14:1093882. [PMID: 37274792 PMCID: PMC10233745 DOI: 10.3389/fgene.2023.1093882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Identifying DNA methylation sites that regulate the metabolome is important for several purposes. In this study, publicly available GWAS data were integrated to find methylation sites that impact metabolome through a discovery and replication scheme and by using Mendelian randomization. Results: The outcome of analyses revealed 107 methylation sites associated with 84 metabolites at the genome-wide significance level (p<5e-8) at both the discovery and replication stages. A large percentage of the observed associations (85%) were with lipids, significantly higher than expected (p = 0.0003). A number of CpG (methylation) sites showed specificity e.g., cg20133200 within PFKP was associated with glucose only and cg10760299 within GATM impacted the level of creatinine; in contrast, there were sites associated with numerous metabolites e.g., cg20102877 on the 2p23.3 region was associated with 39 metabolites. Integrating transcriptome data enabled identifying genes (N = 82) mediating the impact of methylation sites on the metabolome and cardiometabolic traits. For example, PABPC4 mediated the impact of cg15123755-HDL on type-2 diabetes. KCNK7 mediated the impact of cg21033440-lipids on hypertension. POC5, ILRUN, FDFT1, and NEIL2 mediated the impact of CpG sites on obesity through metabolic pathways. Conclusion: This study provides a catalog of DNA methylation sites that regulate the metabolome for downstream applications.
Collapse
|
7
|
Hong-Le T, Crouse WL, Keele GR, Holl K, Seshie O, Tschannen M, Craddock A, Das SK, Szalanczy AM, McDonald B, Grzybowski M, Klotz J, Sharma NK, Geurts AM, Key CCC, Hawkins G, Valdar W, Mott R, Solberg Woods LC. Genetic Mapping of Multiple Traits Identifies Novel Genes for Adiposity, Lipids, and Insulin Secretory Capacity in Outbred Rats. Diabetes 2023; 72:135-148. [PMID: 36219827 PMCID: PMC9797320 DOI: 10.2337/db22-0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2023]
Abstract
Despite the successes of human genome-wide association studies, the causal genes underlying most metabolic traits remain unclear. We used outbred heterogeneous stock (HS) rats, coupled with expression data and mediation analysis, to identify quantitative trait loci (QTLs) and candidate gene mediators for adiposity, glucose tolerance, serum lipids, and other metabolic traits. Physiological traits were measured in 1,519 male HS rats, with liver and adipose transcriptomes measured in >410 rats. Genotypes were imputed from low-coverage whole-genome sequencing. Linear mixed models were used to detect physiological and expression QTLs (pQTLs and eQTLs, respectively), using both single nucleotide polymorphism (SNP)- and haplotype-based models for pQTL mapping. Genes with cis-eQTLs that overlapped pQTLs were assessed as causal candidates through mediation analysis. We identified 14 SNP-based pQTLs and 19 haplotype-based pQTLs, of which 10 were in common. Using mediation, we identified the following genes as candidate mediators of pQTLs: Grk5 for fat pad weight and serum triglyceride pQTLs on Chr1, Krtcap3 for fat pad weight and serum triglyceride pQTLs on Chr6, Ilrun for a fat pad weight pQTL on Chr20, and Rfx6 for a whole pancreatic insulin content pQTL on Chr20. Furthermore, we verified Grk5 and Ktrcap3 using gene knockdown/out models, thereby shedding light on novel regulators of obesity.
Collapse
Affiliation(s)
- Thu Hong-Le
- Genetics Institute, University College London, London, U.K
| | - Wesley L. Crouse
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Katie Holl
- Medical College of Wisconsin, Milwaukee, WI
| | - Osborne Seshie
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Ann Craddock
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Swapan K. Das
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alexandria M. Szalanczy
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Bailey McDonald
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | | | - Neeraj K. Sharma
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Chia-Chi Chuang Key
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Gregory Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Richard Mott
- Genetics Institute, University College London, London, U.K
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|