1
|
Haliloğlu G, Ravenscroft G. The evolving genetic landscape of neuromuscular fetal akinesias. J Neuromuscul Dis 2025:22143602251339357. [PMID: 40356365 DOI: 10.1177/22143602251339357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Fetal akinesia is a broad term used to describe absent (or reduced, fetal hypokinesia) fetal movements, and it can be detected as early as the first trimester. Depending on the developmental age of onset, anything that interferes or limits the normal in utero movement results in a range of deformations affecting multiple organs and organ systems. Arthrogryposis, also termed arthrogryposis multiplex congenita (AMC), is a definitive terminology for multiple congenital contractures, with two major subgroups; amyoplasia and distal arthrogryposis (DA). The spectrum includes fetal akinesia deformation sequence (FADS), lethal congenital contracture syndrome (LCCS), and multiple pterygium syndrome (MPS). Variants in more than >400 genes are known to cause AMC, and it is increasingly recognized that variants in genes encoding critical components (including ventral horn cell, peripheral nerve, neuromuscular junction, skeletal muscle) of the extended motor unit underlie ∼40% of presentations. With unbiased screening approaches, including sequencing of comprehensive disease gene panels, exomes and genomes, novel genes and phenotypic expansions associated with known human disease genes have been uncovered in the setting of fetal akinesia. Autosomal-recessive titinopathy is the most frequent genetic cause of AMC. Accurate genetic diagnosis is critical to genetic counseling and informing family planning. Around 50% remain undiagnosed following comprehensive prenatal, diagnostic or research screening. Comprehensive phenotyping and periodic reanalysis with appropriate genomic tools are valuable strategies when faced with initial inconclusive results. There are likely many novel causative genes still to identify, which will inform our understanding of the molecular pathways underlying early human development and in utero movement.
Collapse
Affiliation(s)
- Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Naito C, Kosar K, Kishimoto E, Pena L, Huang Y, Hao K, Bernieh A, Kasten J, Villa C, Kishnani P, Deeksha B, Gu M, Asai A. Induced pluripotent stem cell (iPSC) modeling validates reduced GBE1 enzyme activity due to a novel variant, p.Ile694Asn, found in a patient with suspected glycogen storage disease IV. Mol Genet Metab Rep 2024; 39:101069. [PMID: 38516405 PMCID: PMC10955421 DOI: 10.1016/j.ymgmr.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background Glycogen Storage disease type 4 (GSD4), a rare disease caused by glycogen branching enzyme 1 (GBE1) deficiency, affects multiple organ systems including the muscles, liver, heart, and central nervous system. Here we report a GSD4 patient, who presented with severe hepatosplenomegaly and cardiac ventricular hypertrophy. GBE1 sequencing identified two variants: a known pathogenic missense variant, c.1544G>A (p.Arg515His), and a missense variant of unknown significance (VUS), c.2081T>A (p. Ile694Asn). As a liver transplant alone can exacerbate heart dysfunction in GSD4 patients, a precise diagnosis is essential for liver transplant indication. To characterize the disease-causing variant, we modeled patient-specific GBE1 deficiency using CRISPR/Cas9 genome-edited induced pluripotent stem cells (iPSCs). Methods iPSCs from a healthy donor (iPSC-WT) were genome-edited by CRISPR/Cas9 to induce homozygous p.Ile694Asn in GBE1 (iPSC-GBE1-I694N) and differentiated into hepatocytes (iHep) or cardiomyocytes (iCM). GBE1 enzyme activity was measured, and PAS-D staining was performed to analyze polyglucosan deposition in these cells. Results iPSCGBE1-I694N differentiated into iHep and iCM exhibited reduced GBE1 protein level and enzyme activity in both cell types compared to iPSCwt. Both iHepGBE1-I694N and iCMGBE1-I694N showed polyglucosan deposits correlating to the histologic patterns of the patient's biopsies. Conclusions iPSC-based disease modeling supported a loss of function effect of p.Ile694Asn in GBE1. The modeling of GBE1 enzyme deficiency in iHep and iCM cell lines had multi-organ findings, demonstrating iPSC-based modeling usefulness in elucidating the effects of novel VUS in ultra-rare diseases.
Collapse
Affiliation(s)
- Chie Naito
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karis Kosar
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eriko Kishimoto
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Loren Pena
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yilun Huang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaili Hao
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anas Bernieh
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jennifer Kasten
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chet Villa
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke Health, Durham, NC, USA
| | - Bali Deeksha
- Department of Pediatrics, Division of Medical Genetics, Duke Health, Durham, NC, USA
| | - Mingxia Gu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Akihiro Asai
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Koch RL, Kiely BT, Choi SJ, Jeck WR, Flores LS, Sood V, Alam S, Porta G, LaVecchio K, Soler-Alfonso C, Kishnani PS. Natural history study of hepatic glycogen storage disease type IV and comparison to Gbe1ys/ys model. JCI Insight 2024; 9:e177722. [PMID: 38912588 PMCID: PMC11383185 DOI: 10.1172/jci.insight.177722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
BackgroundGlycogen storage disease type IV (GSD IV) is an ultrarare autosomal recessive disorder that causes deficiency of functional glycogen branching enzyme and formation of abnormally structured glycogen termed polyglucosan. GSD IV has traditionally been categorized based on primary hepatic or neuromuscular involvement, with hepatic GSD IV subclassified as discrete subtypes: classic (progressive) and nonprogressive.MethodsTo better understand the progression of liver disease in GSD IV, we present clinical and histopathology data from 23 patients from around the world and characterized the liver involvement in the Gbe1ys/ys knockin mouse model.ResultsWe propose an alternative to the established subtype-based terminology for characterizing liver disease in GSD IV and recognize 3 tiers of disease severity: (i) "severe progressive" liver disease, (ii) "intermediate progressive" liver disease, and (iii) "attenuated" liver disease. Analysis of liver pathology revealed that risk for liver failure cannot be predicted from liver biopsy findings alone in individuals affected by GSD IV. Moreover, analysis of postmortem liver pathology from an individual who died over 40 years after being diagnosed with nonprogressive hepatic GSD IV in childhood verified that liver fibrosis did not regress. Last, characterization of the liver involvement in a mouse model known to recapitulate the adult-onset neurodegenerative form of GSD IV (Gbe1ys/ys mouse model) demonstrated hepatic disease.ConclusionOur findings challenge the established subtype-based view of GSD IV and suggest that liver disease severity among patients with GSD IV represents a disease continuum.Trial registrationClinicalTrials.gov NCT02683512FundingNone.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, and
| | | | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, and
| | - William R Jeck
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Vikrant Sood
- Department of Pediatric Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gilda Porta
- Hepatology and Liver Transplant Unit, Menino Jesus Hospital, São Paulo, Brazil
| | - Katy LaVecchio
- Department of Pathology, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
4
|
Lefèvre CR, Collardeau-Frachon S, Streichenberger N, Berenguer-Martin S, Clémenson A, Massardier J, Prieur F, Laurichesse H, Laffargue F, Acquaviva-Bourdain C, Froissart R, Pettazzoni M. Severe neuromuscular forms of glycogen storage disease type IV: Histological, clinical, biochemical, and molecular findings in a large French case series. J Inherit Metab Dis 2024; 47:255-269. [PMID: 38012812 DOI: 10.1002/jimd.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Glycogen storage disease type IV (GSD IV), also called Andersen disease, or amylopectinosis, is a highly heterogeneous autosomal recessive disorder caused by a glycogen branching enzyme (GBE, 1,4-alpha-glucan branching enzyme) deficiency secondary to pathogenic variants on GBE1 gene. The incidence is evaluated to 1:600 000 to 1:800 000 of live births. GBE deficiency leads to an excessive deposition of structurally abnormal, amylopectin-like glycogen in affected tissues (liver, skeletal muscle, heart, nervous system, etc.). Diagnosis is often guided by histological findings and confirmed by GBE activity deficiency and molecular studies. Severe neuromuscular forms of GSD IV are very rare and of disastrous prognosis. Identification and characterization of these forms are important for genetic counseling for further pregnancies. Here we describe clinical, histological, enzymatic, and molecular findings of 10 cases from 8 families, the largest case series reported so far, of severe neuromuscular forms of GSD IV along with a literature review. Main antenatal features are: fetal akinesia deformation sequence or arthrogryposis/joint contractures often associated with muscle atrophy, decreased fetal movement, cystic hygroma, and/or hydrops fetalis. If pregnancy is carried to term, the main clinical features observed at birth are severe hypotonia and/or muscle atrophy, with the need for mechanical ventilation, cardiomyopathy, retrognathism, and arthrogryposis. All our patients were stillborn or died within 1 month of life. In addition, we identified five novel GBE1 variants.
Collapse
Affiliation(s)
- Charles R Lefèvre
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
- Department of Biochemistry and Toxicology, University Hospital, Rennes, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hospices Civils de Lyon and Soffoet (Société Française de Fœtopathologie), Bron, France
| | - Nathalie Streichenberger
- Department of Pathology, Hospices Civils de Lyon - Université Claude Bernard Lyon1 - Institut NeuroMyogène CNRS UMR 5261 - INSERM U1315, France
| | | | - Alix Clémenson
- Department of Pathology, University Hospital, Saint-Etienne, France
| | - Jérôme Massardier
- Multidisciplinary Center for Prenatal Diagnosis, Department of Obstetrics and Gynecology, Hospices Civils de Lyon, Femme Mere Enfant University Hospital, Bron, France
| | - Fabienne Prieur
- Department of Clinical, Chromosomal and Molecular Genetics, University Hospital, Saint-Etienne, France
| | | | - Fanny Laffargue
- Department of Genetics, University Hospital, Clermont-Ferrand, France
| | | | - Roseline Froissart
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
| | - Magali Pettazzoni
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
5
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Elizabeth D. Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Benjamin D. Arnson
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
6
|
Gayed MM, Sgobbi P, Pinto WBVDR, Kishnani PS, Koch RL. Case report: Expanding the understanding of the adult polyglucosan body disease continuum: novel presentations, diagnostic pitfalls, and clinical pearls. Front Genet 2023; 14:1282790. [PMID: 38164512 PMCID: PMC10758020 DOI: 10.3389/fgene.2023.1282790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Adult polyglucosan body disease (APBD) has long been regarded as the adult-onset form of glycogen storage disease type IV (GSD IV) and is caused by biallelic pathogenic variants in GBE1. Advances in the understanding of the natural history of APBD published in recent years have led to the use of discrete descriptors ("typical" versus "atypical") based on adherence to traditional symptomatology and homozygosity for the p.Y329S variant. Although these general descriptors are helpful in summarizing common findings and symptoms in APBD, they are inherently limited and may affect disease recognition in diverse populations. Methods: This case series includes three American patients (cases 1-3) and four Brazilian patients (cases 4-7) diagnosed with APBD. Patient-reported outcome (PRO) measures were employed to evaluate pain, fatigue, and quality of life in cases 1-3. Results: We describe the clinical course and diagnostic odyssey of seven cases of APBD that challenge the utility and efficacy of discrete descriptors. Cases 1-3 are compound heterozygotes that harbor the previously identified deep intronic variant in GBE1 and presented with "typical" APBD phenotypically, despite lacking two copies of the pathogenic p.Y329S variant. Patient-reported outcome measures in these three cases revealed the moderate levels of pain and fatigue as well as an impacted quality of life. Cases 4-7 have unique genotypic profiles and emphasize the growing recognition of presentations of APBD in diverse populations with broad neurological manifestations. Conclusion: Collectively, these cases underscore the understanding of APBD as a spectrum disorder existing on the GSD IV phenotypic continuum. We draw attention to the pitfalls of commonly used genetic testing methods when diagnosing APBD and highlight the utility of patient-reported outcome questionnaires in managing this disease.
Collapse
Affiliation(s)
- Matthew M. Gayed
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Paulo Sgobbi
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
7
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Bezirganoglu H, Adanur Saglam K. An Unusual Case of Neonatal Hypotonia and Femur Fracture: Neuromuscular Variant of Glycogen Storage Disease Type IV. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1375. [PMID: 37628374 PMCID: PMC10453659 DOI: 10.3390/children10081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Glycogen storage disease type IV (GSD IV) (OMIM #232500) is an autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme. Here, we report a patient presenting with prematurity and severe hypotonia resulting from a complicated pregnancy with polyhydramnios. During her stay in the neonatal unit, the infant remained dependent on a ventilator, and her movements were mostly absent, except for occasional small movements of her fingers. A spontaneous fracture of femur shaft occurred in the postnatal fourth week. Whole-exome sequencing of DNA from the patient revealed a homozygous missense variant in the GBE1 gene (c.1693C>T, p.Arg565Trp). The variation detected in the index case was also confirmed by Sanger sequencing in the patient and respective parents. This study showed that the neuromuscular subtypes of GSD-IV should be considered as a possible differential diagnosis in severe neonatal hypotonia cases.
Collapse
Affiliation(s)
- Handan Bezirganoglu
- Division of Neonatology, Trabzon Kanuni Training and Research Hospital, Trabzon 61080, Türkiye
| | - Kubra Adanur Saglam
- Department of Medical Genetics, Karadeniz Technical University Medical Faculty, Trabzon 61080, Türkiye
| |
Collapse
|
9
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|