1
|
Vedala K, Aungaroon G, Ritter D, Greiner HM, Tenney JR, Skoch J, Horn PS, Leach JL, Mangano FT, Krueger D, Arya R. Altered cortical excitability in tuberous sclerosis and the effect of mTOR inhibitors: An intracranial electrical stimulation study. Clin Neurophysiol 2025; 172:1-9. [PMID: 39947023 PMCID: PMC11932767 DOI: 10.1016/j.clinph.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 03/12/2025]
Abstract
OBJECTIVE We used electrical stimulation mapping (ESM) of functional responses, after-discharges (ADs), and unwanted electrical stimulation-induced seizures (EIS) to explore differences in cortical excitability in tuberous sclerosis complex (TSC) patients on mTOR inhibitors, TSC patients not on mTOR inhibitors, and drug-resistant epilepsy (DRE) of unknown etiology. METHODS In 20 patients with TSC and 10 patients with DRE of unknown etiology, incidence and current thresholds of physiologic (language and motor) and pathologic (ADs, EIS) responses were analyzed using mixed effects models against disease phenotype (TSC vs unknown) and use of mTOR inhibitors. RESULTS Patients with TSC showed a higher incidence and required a lower threshold current to elicit motor responses and ADs compared to those with DRE of unknown etiology. In TSC patients, mTOR inhibitors increased the threshold for motor responses and ADs, and decreased the incidence of face motor responses, language responses, and ADs. CONCLUSIONS TSC patients exhibit higher physiologic and pathologic cortical excitability evidenced by a higher incidence and lower current thresholds of ESM responses, which appears to be mitigated by mTOR inhibitors. SIGNIFICANCE To our knowledge, this is the first study providing direct intracranial evidence for altered cortical excitability in TSC and the corrective effect of mTOR inhibitors.
Collapse
Affiliation(s)
- Kishore Vedala
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Gewalin Aungaroon
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA
| | - David Ritter
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA
| | - Hansel M Greiner
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA
| | - Jeffrey R Tenney
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA
| | - Jesse Skoch
- Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA; Division of Pediatric Neurosurgery Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Paul S Horn
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA
| | - James L Leach
- Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA; Division of Pediatric Neuroradiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Francesco T Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA; Division of Pediatric Neurosurgery Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Darcy Krueger
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA
| | - Ravindra Arya
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati OH USA; Department of Computer Science, University of Cincinnati Cincinnati OH USA.
| |
Collapse
|
2
|
Wright K, Han DJ, Song R, de Silva K, Plain KM, Purdie AC, Shepherd A, Chin M, Hortle E, Wong JJL, Britton WJ, Oehlers SH. Zebrafish tsc1 and cxcl12a increase susceptibility to mycobacterial infection. Life Sci Alliance 2024; 7:e202302523. [PMID: 38307625 PMCID: PMC10837051 DOI: 10.26508/lsa.202302523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.
Collapse
Affiliation(s)
- Kathryn Wright
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Darryl Jy Han
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renhua Song
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Kumudika de Silva
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Karren M Plain
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Auriol C Purdie
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Ava Shepherd
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Maegan Chin
- Directed Evolution Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Elinor Hortle
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation and University of Technology Sydney, Sydney, Australia
| | - Justin J-L Wong
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Epigenetics and RNA Biology Laboratory, Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Frederiksen SD, Wicki-Stordeur LE, Swayne LA. Overlap in synaptic neurological condition susceptibility pathways and the neural pannexin 1 interactome revealed by bioinformatics analyses. Channels (Austin) 2023; 17:2253102. [PMID: 37807670 PMCID: PMC10563626 DOI: 10.1080/19336950.2023.2253102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Many neurological conditions exhibit synaptic impairments, suggesting mechanistic convergence. Additionally, the pannexin 1 (PANX1) channel and signaling scaffold is linked to several of these neurological conditions and is an emerging regulator of synaptic development and plasticity; however, its synaptic pathogenic contributions are relatively unexplored. To this end, we explored connections between synaptic neurodevelopmental disorder and neurodegenerative disease susceptibility genes discovered by genome-wide association studies (GWASs), and the neural PANX1 interactome (483 proteins) identified from mouse Neuro2a (N2a) cells. To identify shared susceptibility genes, we compared synaptic suggestive GWAS candidate genes amongst autism spectrum disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. To further probe PANX1 signaling pathways at the synapse, we used bioinformatics tools to identify PANX1 interactome signaling pathways and protein-protein interaction clusters. To shed light on synaptic disease mechanisms potentially linking PANX1 and these four neurological conditions, we performed additional cross-analyses between gene ontologies enriched for the PANX1 synaptic and disease-susceptibility gene sets. Finally, to explore the regional specificity of synaptic PANX1-neurological condition connections, we identified brain region-specific elevations of synaptic PANX1 interactome and GWAS candidate gene set transcripts. Our results confirm considerable overlap in risk genes for autism spectrum disorders and schizophrenia and identify potential commonalities in genetic susceptibility for neurodevelopmental disorders and neurodegenerative diseases. Our findings also pinpointed novel putative PANX1 links to synaptic disease-associated pathways, such as regulation of vesicular trafficking and proteostasis, warranting further validation.
Collapse
Affiliation(s)
| | | | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|