1
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Li H, Xu L, Cao H, Wang T, Yang S, Tong Y, Wang L, Liu Q. Analysis on the pathogenesis and treatment progress of NRG1 fusion-positive non-small cell lung cancer. Front Oncol 2024; 14:1405380. [PMID: 38957319 PMCID: PMC11217482 DOI: 10.3389/fonc.2024.1405380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Lung cancer persistently leads as the primary cause of morbidity and mortality among malignancies. A notable increase in the prevalence of lung adenocarcinoma has become evident in recent years. Although targeted therapies have shown in treating certain subsets of non-small cell lung cancers (NSCLC), a significant proportion of patients still face suboptimal therapeutic outcomes. Neuregulin-1 (NRG1), a critical member of the NRG gene family, initially drew interest due to its distribution within the nascent ventricular endocardium, showcasing an exclusive presence in the endocardium and myocardial microvessels. Recent research has highlighted NRG1's pivotal role in the genesis and progression across a spectrum of tumors, influencing molecular perturbations across various tumor-associated signaling pathways. This review provides a concise overview of NRG1, including its expression patterns, configuration, and fusion partners. Additionally, we explore the unique features and potential therapeutic strategies for NRG1 fusion-positive occurrences within the context of NSCLC.
Collapse
Affiliation(s)
- Hongyan Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Lina Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Hongshun Cao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Tianyi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Siwen Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Yixin Tong
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| | - Qiang Liu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Bamodu OA, Chung CC, Pisanic TR, Wu ATH. The intricate interplay between cancer stem cells and cell-of-origin of cancer: implications for therapeutic strategies. Front Oncol 2024; 14:1404628. [PMID: 38800385 PMCID: PMC11116576 DOI: 10.3389/fonc.2024.1404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design Comprehensive review of thematically-relevant literature. Methods We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander T. H. Wu
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Herst P, Carson G, Lewthwaite D, Eccles D, Schmidt A, Wilson A, Grasso C, O’Sullivan D, Neuzil J, McConnell M, Berridge M. Residual OXPHOS is required to drive primary and metastatic lung tumours in an orthotopic breast cancer model. Front Oncol 2024; 14:1362786. [PMID: 38751813 PMCID: PMC11094293 DOI: 10.3389/fonc.2024.1362786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Background Fast adaptation of glycolytic and mitochondrial energy pathways to changes in the tumour microenvironment is a hallmark of cancer. Purely glycolytic ρ0 tumour cells do not form primary tumours unless they acquire healthy mitochondria from their micro-environment. Here we explored the effects of severely compromised respiration on the metastatic capability of 4T1 mouse breast cancer cells. Methods 4T1 cell lines with different levels of respiratory capacity were generated; the Seahorse extracellular flux analyser was used to evaluate oxygen consumption rates, fluorescent confocal microscopy to assess the number of SYBR gold-stained mitochondrial DNA nucleoids, and the presence of the ATP5B protein in the cytoplasm and fluorescent in situ nuclear hybridization was used to establish ploidy. MinION nanopore RNA sequence analysis was used to compare mitochondrial DNA transcription between cell lines. Orthotopic injection was used to determine the ability of cells to metastasize to the lungs of female Balb/c mice. Results OXPHOS-deficient ATP5B-KO3.1 cells did not generate primary tumours. Severely OXPHOS compromised ρ0D5 cells generated both primary tumours and lung metastases. Cells generated from lung metastasis of both OXPHOS-competent and OXPHOS-compromised cells formed primary tumours but no metastases when re-injected into mice. OXPHOS-compromised cells significantly increased their mtDNA content, but this did not result in increased OXPHOS capacity, which was not due to decreased mtDNA transcription. Gene set enrichment analysis suggests that certain cells derived from lung metastases downregulate their epithelial-to-mesenchymal related pathways. Conclusion In summary, OXPHOS is required for tumorigenesis in this orthotopic mouse breast cancer model but even very low levels of OXPHOS are sufficient to generate both primary tumours and lung metastases.
Collapse
Affiliation(s)
- Patries Herst
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - Georgia Carson
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Danielle Lewthwaite
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences , Victoria University of Wellington, Wellington, New Zealand
| | - David Eccles
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Alfonso Schmidt
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Andrew Wilson
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carole Grasso
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - David O’Sullivan
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Melanie McConnell
- School of Biological Sciences , Victoria University of Wellington, Wellington, New Zealand
| | - Michael Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
5
|
Zhang L, Zhang X, Shi Y, Ni Y, Fei J, Jin Z, Li W, Wang X, Wu N. Role and potential therapeutic value of histone methyltransferases in drug resistance mechanisms in lung cancer. Front Oncol 2024; 14:1376916. [PMID: 38525426 PMCID: PMC10957659 DOI: 10.3389/fonc.2024.1376916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.
Collapse
Affiliation(s)
- Linxiang Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xueying Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Shi
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuhan Ni
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiaojiao Fei
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixin Jin
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Li
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Wu
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Pérez-González A, Ramírez-Díaz I, Guzmán-Linares J, Sarvari P, Sarvari P, Rubio K. ncRNAs Orchestrate Chemosensitivity Induction by Neddylation Blockades. Cancers (Basel) 2024; 16:825. [PMID: 38398217 PMCID: PMC10886669 DOI: 10.3390/cancers16040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
We performed an integrative transcriptomic in silico analysis using lung adenocarcinoma A549 cells treated with the neddylation inhibitor MLN4924 and the gefitinib-resistant PC9 cell line (PC9GR). We focused on the transcriptional effects of the top differentially expressed ncRNA biotypes and their correlating stemness factors. Interestingly, MLN4924-treated cells showed a significant upregulation of mRNAs involved in carcinogenesis, cell attachment, and differentiation pathways, as well as a parallel downregulation of stemness maintenance and survival signaling pathways, an effect that was inversely observed in PC9GR cells. Moreover, we found that stemness factor expression could be contrasted by selected up-regulated ncRNAs upon MLN4924 treatment in a dose and time-independent manner. Furthermore, upregulated miRNAs and lncRNA-targeted mRNAs showed an evident enrichment of proliferation, differentiation, and apoptosis pathways, while downregulated ncRNA-targeted mRNAs were implicated in stem cell maintenance. Finally, our results proved that stemness (KLF4 and FGFR2) and epithelial-mesenchymal transition (ZEB2, TWIST2, SNAI2, CDH2, and VIM) factors, which are highly expressed in PC9GR cells compared to gefitinib-sensitive PC9 cells, could be abrogated with the neddylation inhibitor MLN4924 mainly through activation of epithelial differentiation pathways, thus exerting a protective role in lung cancer cells and chemosensitivity against lung tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
- Faculty of Biotechnology, Popular and Autonomous, University of Puebla State (UPAEP), Puebla 72410, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Pouya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Pourya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| |
Collapse
|
7
|
Chen Q, Jia G, Zhang X, Ma W. Targeting HER3 to overcome EGFR TKI resistance in NSCLC. Front Immunol 2024; 14:1332057. [PMID: 38239350 PMCID: PMC10794487 DOI: 10.3389/fimmu.2023.1332057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) play a crucial role in cellular signaling and oncogenic progression. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) patients with EGFR-sensitizing mutations, but resistance frequently emerges between 10 to 14 months. A significant factor in this resistance is the role of human EGFR 3 (HER3), an EGFR family member. Despite its significance, effective targeting of HER3 is still developing. This review aims to bridge this gap by deeply examining HER3's pivotal contribution to EGFR TKI resistance and spotlighting emerging HER3-centered therapeutic avenues, including monoclonal antibodies (mAbs), TKIs, and antibody-drug conjugates (ADCs). Preliminary results indicate combining HER3-specific treatments with EGFR TKIs enhances antitumor effects, leading to an increased objective response rate (ORR) and prolonged overall survival (OS) in resistant cases. Embracing HER3-targeting therapies represents a transformative approach against EGFR TKI resistance and emphasizes the importance of further research to optimize patient stratification and understand resistance mechanisms.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Gang Jia
- Department of Medical Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xilin Zhang
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
8
|
Jin Y, Zhang Y, Huang A, Chen Y, Wang J, Liu N, Wang X, Gong Y, Wang W, Pan J. Overexpression of SERPINA3 suppresses tumor progression by modulating SPOP/NF‑κB in lung cancer. Int J Oncol 2023; 63:96. [PMID: 37417362 PMCID: PMC10552721 DOI: 10.3892/ijo.2023.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
The pathogenesis mechanism of lung cancer is very complex, with high incidence and mortality. Serpin family A member 3 (SERPINA3) expression levels were reduced in the sera of patients with lung cancer and may be a candidate diagnostic and prognostic survival biomarker in lung cancer, as previously reported. However, the detailed biological functions of SERPINA3 in the pathogenesis of lung cancer remain unknown. In the present study, it was aimed to explore the effects of SERPINA3 on the occurrence of lung cancer. SERPINA3 expression was assessed using bioinformatics database analysis and experimental detection. Then, the biological effects of SERPINA3 were investigated in a cell culture system and a xenograft model of human lung cancer. The potential regulatory mechanism of SERPINA3 in lung cancer was explored by data‑independent acquisition mass spectrometry (DIA‑MS) detection and further validated by western blotting (WB). The results indicated that SERPINA3 expression levels were significantly downregulated in lung cancer tissues and cell lines. At the cellular level, it was revealed that overexpressed SERPINA3 inhibited cell growth, proliferation, migration and invasion and promoted the apoptosis of lung cancer cells. Moreover, overexpressed SERPINA3 enhanced the sensitivity of lung cancer cells to osimertinib. In vivo, a xenograft model of human lung cancer was established with BALB/c nude mice. After the injection of A549 cells, the tumor growth of the tumor‑bearing mice in the SERPINA3‑overexpressing group increased more slowly, and the tumor volume was smaller than that in the empty‑vector group. Mechanistically, a total of 65 differentially expressed proteins were identified. It was found that the speckle‑type POZ protein (SPOP) was significantly upregulated in SERPINA3‑overexpressing H157 cells using DIA‑MS detection and analysis. WB validation showed that SPOP expression increased, and NF‑kappaB (NF‑κB) p65 was inhibited in cell lines and tumor tissues of mice when SERPINA3 was overexpressed. The present findings suggest that SERPINA3 is involved in the development of lung cancer and has an antineoplastic role in lung cancer.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Ankang Huang
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jinsong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Na Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yongsheng Gong
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| |
Collapse
|