1
|
Suri P, Badalov A, Ruggiu M. Alternative Splicing as a Modulator of the Interferon-Gamma Pathway. Cancers (Basel) 2025; 17:594. [PMID: 40002189 PMCID: PMC11853465 DOI: 10.3390/cancers17040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Interferon-gamma (IFN-γ) is a critical cytokine that plays a pivotal role in immune system regulation. It is a key mediator of both cellular defense mechanisms and antitumor immunity. As the sole member of the type II interferon family, IFN-γ modulates immune responses by activating macrophages, enhancing natural killer cell function, and regulating gene expression across multiple cellular processes. Alternative splicing is a post-transcriptional gene expression regulatory mechanism that generates multiple mature messenger RNAs from a single gene, dramatically increasing proteome diversity without the need of a proportional genome expansion. This process occurs in 90-95% of human genes, with alternative splicing events allowing for the production of diverse protein isoforms that can have distinct-or even opposing-functional properties. Alternative splicing plays a crucial role in cancer immunology, potentially generating tumor neoepitopes and modulating immune responses. However, how alternative splicing affects IFN-γ's activity is still poorly understood. This review explores how alternative splicing regulates the expression and function of both upstream regulators and downstream effectors of IFN-γ, revealing complex mechanisms of gene expression and immune response modulation. Key transcription factors and signaling molecules of the IFN-γ pathway are alternatively spliced, and alternative splicing can dramatically alter IFN-γ signaling, immune cell function, and response to environmental cues. Specific splice variants can enhance or inhibit IFN-γ-mediated immune responses, potentially influencing cancer immunotherapy, autoimmune conditions, and infectious disease outcomes. The emerging understanding of these splicing events offers promising therapeutic strategies for manipulating immune responses through targeted molecular interventions.
Collapse
Affiliation(s)
- Parul Suri
- College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Ariana Badalov
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| | - Matteo Ruggiu
- Laboratory of RNA Biology and Molecular Neuroscience, Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway Queens, New York, NY 11439, USA;
| |
Collapse
|
2
|
Johnson HM, Ahmed CM. Disparate viral pandemics from COVID19 to monkeypox and beyond: a simple, effective and universal therapeutic approach hiding in plain sight. Front Immunol 2023; 14:1208828. [PMID: 38106428 PMCID: PMC10722180 DOI: 10.3389/fimmu.2023.1208828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The field of antiviral therapeutics is fixated on COVID19 and rightly so as the fatalities at the height of the pandemic in the United States were almost 1,000,000 in a twelve month period spanning parts of 2020/2021. A coronavirus called SARS-CoV2 is the causative virus. Development of a vaccine through molecular biology approaches with mRNA as the inducer of virus spike protein has played a major role in driving down mortality and morbidity. Antivirals have been of marginal value in established infections at the level of hospitalization. Thus, the current focus is on early symptomatic infection of about the first five days. The Pfizer drug paxlovid which is composed of nirmatrelvir, a peptidomimetic protease inhibitor of SARS-CoV2 Mpro enzyme, and ritonavir to retard degradation of nirmatrelvir, is the current FDA recommended treatment of early COVID19. There is no evidence of broad antiviral activity of paxlovid against other diverse viruses such as the influenza virus, poxviruses, as well as a host of respiratory viruses. Although type I interferons (IFNs) are effective against SARS-CoV2 in cell cultures and in early COVID19 infections, they have not been broadly recommended as therapeutics for COVID19. We have developed stable peptidomimetics of both types I and II IFNs based on our noncanonical model of IFN signaling involving the C-terminus of the IFNs. We have also identified two members of intracellular checkpoint inhibitors called suppressors of cytokine signaling (SOCS), SOCS1 and SOCS3 (SOCS1/3), and shown that they are virus induced intrinsic virulence proteins with activity against IFN signaling enzymes JAK2 and TYK2. We developed a peptidomimetic antagonist, based on JAK2 activation loop, against SOCS1/3 and showed that it synergizes with the IFN mimetics for potent broad spectrum antiviral activity without the toxicity of intact IFN molecules. IFN mimetics and the SOCS1/3 antagonist should have an advantage over currently used antivirals in terms of safety and potency against a broad spectrum of viruses.
Collapse
Affiliation(s)
- Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
3
|
DeDreu J, Basta MD, Walker JL, Menko AS. Immune Responses Induced at One Hour Post Cataract Surgery Wounding of the Chick Lens. Biomolecules 2023; 13:1615. [PMID: 38002297 PMCID: PMC10668984 DOI: 10.3390/biom13111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
While the lens is an avascular tissue with an immune-privileged status, studies have now revealed that there are immune responses specifically linked to the lens. The response to lens injury, such as following cataract surgery, has been shown to involve the activation of the resident immune cell population of the lens and the induction of immunomodulatory factors by the wounded epithelium. However, there has been limited investigation into the immediate response of the lens to wounding, particularly those induced factors that are intrinsic to the lens and its associated resident immune cells. Using an established chick embryo ex vivo cataract surgery model has made it possible to determine the early immune responses of this tissue to injury, including its resident immune cells, through a transcriptome analysis. RNA-seq studies were performed to determine the gene expression profile at 1 h post wounding compared to time 0. The results provided evidence that, as occurs in other tissues, the resident immune cells of the lens rapidly acquired a molecular signature consistent with their activation. These studies also identified the expression of many inflammatory factors by the injured lens that are associated with both the induction and regulation of the immune response.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Morgan D. Basta
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA (M.D.B.); (J.L.W.)
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Thuner J, Coutant F. IFN-γ: An overlooked cytokine in dermatomyositis with anti-MDA5 antibodies. Autoimmun Rev 2023; 22:103420. [PMID: 37625674 DOI: 10.1016/j.autrev.2023.103420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Dermatomyositis with anti-melanoma differentiation-associated gene 5 antibody (anti-MDA5 DM) is a rare autoimmune disease, often complicated by life-threatening, rapidly progressive interstitial lung disease. Additional manifestations of the disease include skin lesions, vascular abnormalities, joints and muscles pain. Despite its clinical significance, the pathogenesis of anti-MDA5 DM remains largely unknown. Currently, the disease is perceived as driven by type I interferon (IFN) whose expression is increased in most of the patients. Importantly, the regulation of IFN-γ is also altered in anti-MDA5 DM as evidenced by the presence of IFN-γ positive histiocytes in the lungs of patients, and the identification of autoantibodies that directly stimulate the production of IFN-γ by mononuclear cells. This review critically examines the pathogenesis of the disease, shedding light on recent findings that emphasize a potential role of IFN-γ. A novel conceptual framework is proposed, which integrates the molecular mechanisms altering IFN-γ regulation in anti-MDA5 DM with the known functional effects of IFN-γ on key tissues affected during the disease, such as the lungs, skin, and vessels. Understanding the precise role and relevance of IFN-γ in the pathogenesis of the disease will not only enhance the selection of available therapies for anti-MDA5 DM patients but also pave the way for the development of new therapeutic approaches targeting the altered molecular pathways.
Collapse
Affiliation(s)
- Jonathan Thuner
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Internal medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Frédéric Coutant
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France.
| |
Collapse
|
5
|
Sinha N, Yang H, Janse D, Hendriks L, Rand U, Hauser H, Köster M, van de Vosse FN, de Greef TFA, Tel J. Microfluidic chip for precise trapping of single cells and temporal analysis of signaling dynamics. COMMUNICATIONS ENGINEERING 2022; 1:18. [PMCID: PMC10955935 DOI: 10.1038/s44172-022-00019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2024]
Abstract
Microfluidic designs are versatile examples of technology miniaturisation that find their applications in various cell biology research, especially to investigate the influence of environmental signals on cellular response dynamics. Multicellular systems operate in intricate cellular microenvironments where environmental signals govern well-orchestrated and robust responses, the understanding of which can be realized with integrated microfluidic systems. In this study, we present a fully automated and integrated microfluidic chip that can deliver input signals to single and isolated suspension or adherent cells in a precisely controlled manner. In respective analyses of different single cell types, we observe, in real-time, the temporal dynamics of caspase 3 activation during DMSO-induced apoptosis in single cancer cells (K562) and the translocation of STAT-1 triggered by interferon γ (IFNγ) in single fibroblasts (NIH3T3). Our investigations establish the employment of our versatile microfluidic system in probing temporal single cell signaling networks where alternations in outputs uncover signal processing mechanisms. Nidhi Sinha, Haowen Yang and colleagues report a microfluidic large-scale integration chip to probe temporal single-cell signalling networks via the delivery of patterns of input signalling molecules. The researchers use their device to investigate drug-induced cancer cell apoptosis and single cell transcription (STAT-1) protein signalling dynamics.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - David Janse
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Luc Hendriks
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Tom F. A. de Greef
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Computational Biology Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
6
|
Lan B, Lv D, Sun X, Yang M, Zhang L, Ma F. Genetic Variations in IFNGR1, BDNF and IL-10 May Predict the Susceptibility to Depression and Anxiety in Chinese Women With Breast Cancer. Clin Breast Cancer 2022; 22:674-680. [DOI: 10.1016/j.clbc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
|
7
|
Ahmed CM, Grams TR, Bloom DC, Johnson HM, Lewin AS. Individual and Synergistic Anti-Coronavirus Activities of SOCS1/3 Antagonist and Interferon α1 Peptides. Front Immunol 2022; 13:902956. [PMID: 35799776 PMCID: PMC9254576 DOI: 10.3389/fimmu.2022.902956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Suppressors of Cytokine Signaling (SOCS) are intracellular proteins that negatively regulate the induction of cytokines. Amongst these, SOCS1 and SOCS3 are particularly involved in inhibition of various interferons. Several viruses have hijacked this regulatory pathway: by inducing SOCS1and 3 early in infection, they suppress the host immune response. Within the cell, SOCS1/3 binds and inhibits tyrosine kinases, such as JAK2 and TYK2. We have developed a cell penetrating peptide from the activation loop of the tyrosine kinase, JAK2 (residues 1001-1013), denoted as pJAK2 that acts as a decoy and suppresses SOCS1 and 3 activity. This peptide thereby protects against several viruses in cell culture and mouse models. Herein, we show that treatment with pJAK2 inhibited the replication and release of the beta coronavirus HuCoV-OC43 and reduced production of the viral RNA, as measured by RT-qPCR, Western blot and by immunohistochemistry. We confirmed induction of SOCS1 and 3 in rhabdomyosarcoma (RD) cells, and this induction was suppressed by pJAK2 peptide. A peptide derived from the C-terminus of IFNα (IFNα-C) also inhibited replication of OC43. Furthermore, IFNα-C plus pJAK2 provided more potent inhibition than either peptide alone. To extend this study to a pandemic beta-coronavirus, we determined that treatment of cells with pJAK2 inhibited replication and release of SARS-CoV-2 in Calu-3 cells. We propose that these peptides offer a new approach to therapy against the rapidly evolving strains of beta-coronaviruses.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Tristan R. Grams
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Ding G, Zheng C, Wang B, Zhang L, Deng D, Li Q, Guo H, Zhang S, Xu Q. Transcriptome Sequencing Reveals the Antiviral Innate Immunity by IFN-γ in Chinese Sturgeon Macrophages. Front Immunol 2022; 13:854689. [PMID: 35371107 PMCID: PMC8967981 DOI: 10.3389/fimmu.2022.854689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
To further study the biological function of interferon-gamma (IFN-γ) in the Chinese sturgeon (Acipenser sinensis), we conducted a transcriptome analysis of primary macrophages induced by IFN-γ using Illumina sequencing technology. We obtained 88,879 unigenes, with a total length of 93,919,393 bp, and an average length of 1,057bp. We identified 8,490 differentially expressed genes (DEGs) between the untreated and IFN-γ-treated macrophages, with 4,599 upregulated and 3,891 downregulated. Gene ontology (GO) analysis showed that 4,044 DEGs were enriched in the biological, cellular components, and molecular function categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) identified 278 immunity-related pathways enriched for the DEGs. According to the GO enrichment results, eight key immunity-related genes were screened for verification using qPCR. Results indicate that IFN-γ can activate macrophage Interferon Regulatory Factors (IRFs) and type I interferon (IFN-I), activate RIG-I-like and Toll-like receptor-related pathways, and improve the antiviral ability of macrophages in Chinese sturgeon.
Collapse
Affiliation(s)
- Guangyi Ding
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, China
| | - Chuwen Zheng
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Lifeng Zhang
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, China
| | - Dan Deng
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, China
| | - Qian Li
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, China
| | - Huizhi Guo
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, China
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiaoqing Xu
- Institute of Chinese Sturgeon Disease, Yangtze University, Jingzhou, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
9
|
Ahmed CM, Ildefonso CJ, Johnson HM, Lewin AS. A C-terminal peptide from type I interferon protects the retina in a mouse model of autoimmune uveitis. PLoS One 2020; 15:e0227524. [PMID: 32101556 PMCID: PMC7043762 DOI: 10.1371/journal.pone.0227524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/04/2020] [Indexed: 01/26/2023] Open
Abstract
Experimental autoimmune uveitis (EAU) in rodents recapitulates many features of the disease in humans and has served as a useful tool for the development of therapeutics. A peptide from C-terminus of interferon α1, conjugated to palmitoyl-lysine for cell penetration, denoted as IFNα-C, was tested for its anti-inflammatory properties in ARPE-19 cells, followed by testing in a mouse model of EAU. Treatment with IFNα-C and evaluation by RT-qPCR showed the induction of anti-inflammatory cytokines and chemokine. Inflammatory markers induced by treatment with TNFα were suppressed when IFNα-C was simultaneously present. TNF-α mediated induction of NF-κB and signaling by IL-17A were attenuated by IFNα-C. Differentiated ARPE-19 cells were treated with TNFα in the presence or absence IFNα-C and analyzed by immmunhistochemistry. IFNα-C protected against the disruption integrity of tight junction proteins. Similarly, loss of transepithelial resistance caused by TNFα was prevented by IFNα-C. B10.RIII mice were immunized with a peptide from interphotoreceptor binding protein (IRBP) and treated by gavage with IFNα-C. Development of uveitis was monitored by histology, fundoscopy, SD-OCT, and ERG. Treatment with IFNα-C prevented uveitis in mice immunized with the IRBP peptide. Splenocytes isolated from mice with ongoing EAU exhibited antigen-specific T cell proliferation that was inhibited in the presence of IFNα-C. IFNα-C peptide exhibits anti-inflammatory properties and protects mice against damage to retinal structure and function suggesting that it has therapeutic potential for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Cristhian J. Ildefonso
- Department of Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States of America
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
10
|
Shields LE, Jennings J, Liu Q, Lee J, Ma W, Blecha F, Miller LC, Sang Y. Cross-Species Genome-Wide Analysis Reveals Molecular and Functional Diversity of the Unconventional Interferon-ω Subtype. Front Immunol 2019; 10:1431. [PMID: 31293589 PMCID: PMC6603160 DOI: 10.3389/fimmu.2019.01431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
Innate immune interferons (IFNs), particularly type I IFNs, are primary mediators regulating animal antiviral, antitumor, and cell-proliferative activity. These antiviral cytokines have evolved remarkable molecular and functional diversity to confront ever-evolving viral threats and physiological regulation. We have annotated IFN gene families across 110 animal genomes, and showed that IFN genes, after originating in jawed fishes, had several significant evolutionary surges in vertebrate species of amphibians, bats and ungulates, particularly pigs and cattle. For example, pigs have the largest but still expanding type I IFN family consisting of nearly 60 IFN-coding genes that encode seven IFN subtypes including multigene subtypes of IFN-α, -δ, and -ω. Whereas, subtypes such as IFN-α and -β have been widely studied in many species, the unconventional subtypes such as IFN-ω have barely been investigated. We have cross-species defined the IFN evolution, and shown that unconventional IFN subtypes particularly the IFN-ω subtype have evolved several novel features including: (1) being a signature multi-gene subtype expanding primarily in mammals such as bats and ungulates, (2) emerging isoforms that have superior antiviral potency than typical IFN-α, (3) highly cross-species antiviral (but little anti-proliferative) activity exerted in cells of humans and other mammalian species, and (4) demonstrating potential novel molecular and functional properties. This study focused on IFN-ω to investigate the immunogenetic evolution and functional diversity of unconventional IFN subtypes, which may further IFN-based novel antiviral design pertinent to their cross-species high antiviral and novel activities.
Collapse
Affiliation(s)
- Lauren E Shields
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Jordan Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Qinfang Liu
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jinhwa Lee
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Wenjun Ma
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Frank Blecha
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Laura C Miller
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
11
|
Jennings J, Sang Y. Porcine Interferon Complex and Co-Evolution with Increasing Viral Pressure after Domestication. Viruses 2019; 11:v11060555. [PMID: 31208045 PMCID: PMC6631851 DOI: 10.3390/v11060555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Consisting of nearly 60 functional genes, porcine interferon (IFN)-complex represents an evolutionary surge of IFN evolution in domestic ungulate species. To compare with humans and mice, each of these species contains about 20 IFN functional genes, which are better characterized using the conventional IFN-α/β subtypes as examples. Porcine IFN-complex thus represents an optimal model for studying IFN evolution that resulted from increasing viral pressure during domestication and industrialization. We hypothesize and justify that porcine IFN-complex may extend its functionality in antiviral and immunomodulatory activity due to its superior molecular diversity. Furthermore, these unconventional IFNs could even confer some functional and signaling novelty beyond that of the well-studied IFN-α/β subtypes. Investigations into porcine IFN-complex will further our understanding of IFN biology and promote IFN-based therapeutic designs to confront swine viral diseases.
Collapse
Affiliation(s)
- Jordan Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
12
|
Rakityanskaya IA, Ryabova TS, Kalashnikova AA. [Influence of ingaron on the dynamics of interferon-α and -γ production and on the manifestation of clinical symptoms in patients with chronic virus Eрsthtein-Barr infection.]. Vopr Virusol 2019; 64:23-29. [PMID: 30893526 DOI: 10.18821/0507-4088-2019-64-1-23-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Patients with chronic herpes virus infection develop impaired IFN-α and IFN-γ products due to secondary immunodeficiency, which leads to impaired elimination of the intracellular virus and the development of chronic recurrent infection. It has been shown that IFN-γ is a potent immunoregulatory cytokine and has an antiviral effect. OBJECTIVES The aim of the study is to study the effect of Ingaron therapy on the dynamics of IFN-α and IFN-γ production and the clinical picture in patients with chronic Epstein-Barr virus infection (ChEBVI). METHODS 32 patients with ChEBVI were examined. The average age of patients was 35.06 ± 1.60 years. There were 22 women, 10 men. Serum IFN-α and IFN-γ, spontaneous and induced cytokine production in blood lymphocyte cultures were determined. As an inducer of IFN-α products, the Newcastle disease virus was used (obtained in the LA Tarasevich State Medical Institute, St. Petersburg) with an infectious titer of 8 lg EID / 0.2 ml in a volume of 8 μl per well, as an inducer of IFN-γ products, phytohemagglutinin (PanEco, Russia) was used at a dose of 10 µg / ml. The quantitative content of cytokines was determined in the serum and supernatant of a 24-hour whole blood culture using enzymelinked immunosorbent assay (ELISA) using test systems (Vector Best, Russia). RESULTS It was shown that the content of IFN-γ decreased (P = 0.013) after Ingaron therapy in patients with initially high levels of induced IFN-γ (4435.64 ± 1343.50 pg/ml). In patients with initially low levels of induced IFN-γ (234.25 ± 34 , 31 pg / ml) the content of IFN-γ increased (P = 0.002). Ingaron leads to an increase in spontaneous and serum IFN-γ production in patients. CONCLUSIONS Conducting Ingaron therapy with ChEBVI is shown independently of the initial production of IFN-γ-induced lymphocyte culture. Ingaron is recommended for the treatment of patients with ChEBVI at a dose of 500,000 IU with a course dose of 10 or more injections.
Collapse
Affiliation(s)
- I A Rakityanskaya
- Outpatient Department of Allergology-Immunology and Clinical Transfusiology City Ambulant Department №112, 195427, St. Petersburg, Russian Federation
| | - T S Ryabova
- Outpatient Department of Allergology-Immunology and Clinical Transfusiology City Ambulant Department №112, 195427, St. Petersburg, Russian Federation.,Military Medical Academy named after S.M. Kirov, 194044, St. Petersburg, Russian Federation
| | - A A Kalashnikova
- The Nikiforov Russian Center of Emergency and Radiation Medicine, 194044, St. Petersburg, Russian Federation
| |
Collapse
|
13
|
Zahradník J, Kolářová L, Pařízková H, Kolenko P, Schneider B. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. FISH & SHELLFISH IMMUNOLOGY 2018; 79:140-152. [PMID: 29742458 DOI: 10.1016/j.fsi.2018.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Interferon gamma (IFN-γ) is one of the key players in the immune system of vertebrates. The evolution and properties of IFN-γ and its receptors in fish species are of special interest as they point to the origin of innate immunity in vertebrates. We studied the phylogeny, biophysical and structural properties of IFN-γ and its receptors. Our phylogeny analysis suggests the existence of two groups of IFN-γ related proteins, one specific for Acanthomorpha, the other for Cypriniformes, Characiformes and Siluriformes. The analysis further shows an ancient duplication of the gene for IFN-γ receptor 1 (IFN- γR1) and the parallel existence of the duplicated genes in all current teleost fish species. In contrast, only one gene can be found for receptor 2, IFN- γR2. The specificity of the interaction between IFN- γ and both types of IFN- γR1 was determined by microscale thermophoresis measurements of the equilibrium dissociation constants for the proteins from three fish species. The measured preference of IFN- γ for one of the two forms of receptor 1agrees with the bioinformatic analysis of the coevolution between IFN- γ and receptor 1. To elucidate structural relationships between IFN-γ of fish and other vertebrate species, we determined the crystal structure of IFN-γ from olive flounder (Paralichthys olivaceus, PoliIFN-γ) at crystallographic resolution of 2.3 Å and the low-resolution structures of Takifugu rubripes, Oreochromis niloticus, and Larimichthys crocea IFN-γ by small angle X-ray diffraction. The overall PoliIFN-γ fold is the same as the fold of the other known IFN- γ structures but there are some significant structural differences, namely the additional C-terminal helix G and a different angle between helices C and D in PoliIFN-γ.
Collapse
Affiliation(s)
- Jiří Zahradník
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| | - Lucie Kolářová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Hana Pařízková
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Petr Kolenko
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, v. v. i., BIOCEV, Průmyslová 595, CZ-252 42 Vestec, Czech Republic.
| |
Collapse
|
14
|
Noncanonical IFN Signaling: Mechanistic Linkage of Genetic and Epigenetic Events. Mediators Inflamm 2016; 2016:9564814. [PMID: 28077919 PMCID: PMC5203919 DOI: 10.1155/2016/9564814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022] Open
Abstract
The canonical model of cytokine signaling via the JAK/STAT pathway dominates our view of signal transduction but provides no insight into the significance of the simultaneous presence of activated JAKs and STATs in the nucleus of cells treated with cytokines. Such a mechanistic shortcoming challenges the usefulness of the model in its present form. Focusing on the interferon (IFN) cytokines, we have developed a noncanonical model of IFN signaling that naturally connects activated JAKs and STATs at or near response elements of genes that are activated by the IFNs. Specifically, cells treated with IFNγ showed association of activated STAT1α and JAK2 at the GAS element of genes activated by IFNγ. For IFNα treated cells, the association involved activated STAT1α and TYK2 JAK kinase at the ISRE promoter. The power of the noncanonical model is that it provides mechanistic insight into specific gene activation at the level of the associated epigenetics, akin to that of steroid/steroid receptor signaling.
Collapse
|
15
|
van Dijk F, Olinga P, Poelstra K, Beljaars L. Targeted Therapies in Liver Fibrosis: Combining the Best Parts of Platelet-Derived Growth Factor BB and Interferon Gamma. Front Med (Lausanne) 2015; 2:72. [PMID: 26501061 PMCID: PMC4594310 DOI: 10.3389/fmed.2015.00072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022] Open
Abstract
Cytokines, growth factors, and other locally produced mediators play key roles in the regulation of disease progression. During liver fibrosis, these mediators orchestrate the balance between pro- and antifibrotic activities as exerted by the hepatic cells. Two important players in this respect are the profibrotic mediator platelet-derived growth factor BB (PDGF-BB) and the antifibrotic cytokine interferon gamma (IFNγ). PDGF-BB, produced by many resident and infiltrating cells, causes extensive proliferation, migration, and contraction of hepatic stellate cells (HSCs) and myofibroblasts. These cells are the extracellular matrix-producing hepatic cells and they highly express the PDGFβ receptor. On the other hand, IFNγ is produced by natural killer cells in fibrotic livers and is endowed with proinflammatory, antiviral, and antifibrotic activities. This cytokine attracted much attention as a possible therapeutic compound in fibrosis. However, clinical trials yielded disappointing results because of low efficacy and adverse effects, most likely related to the dual role of IFNγ in fibrosis. In our studies, we targeted the antifibrotic IFNγ to the liver myofibroblasts. For that, we altered the cell binding properties of IFNγ, by delivery of the IFNγ-nuclear localization sequence to the highly expressed PDGFβ receptor using a PDGFβ receptor recognizing peptide, thereby creating a construct referred to as “Fibroferon” (i.e., fibroblast-targeted interferon γ). In recent years, we demonstrated that HSC-specific delivery of IFNγ increased its antifibrotic potency and improved its general safety profile in vivo, making Fibroferon highly suitable for the treatment of (fibrotic) diseases associated with elevated PDGFβ receptor expression. The present review summarizes the knowledge on these two key mediators, PDGF-BB and IFNγ, and outlines how we used this knowledge to create the cell-specific antifibrotic compound Fibroferon containing parts of both of these mediators.
Collapse
Affiliation(s)
- Fransien van Dijk
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands ; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| | - Leonie Beljaars
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute for Pharmacy , Groningen , Netherlands
| |
Collapse
|
16
|
Johnson HM. Gamma interferon: from antimicrobial activity to immune regulation. Front Immunol 2015; 5:667. [PMID: 25601864 PMCID: PMC4283431 DOI: 10.3389/fimmu.2014.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Howard M. Johnson
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Abstract
The interferons (IFNs) are glycoproteins with strong antiviral activities that represent one of the first lines of host defense against invading pathogens. These proteins are classified into three groups, Type I, II and III IFNs, based on the structure of their receptors on the cell surface. Due to their ability to modulate immune responses, they have become attractive therapeutic options to control chronic virus infections. In combination with other drugs, Type I IFNs are considered as "standard of care" in suppressing Hepatitis C (HCV) and Hepatitis B (HBV) infections, while Type III IFN has generated encouraging results as a treatment for HCV infection in phase III clinical trials. However, though effective, using IFNs as a treatment is not without the need for caution. IFNs are such powerful cytokines that affect a wide array of cell types; as a result, patients usually experience unpleasant symptoms, with a percentage of patients suffering system wide effects. Thus, constant monitoring is required for patients treated with IFN in order to reach the treatment goals of suppressing virus infection and maintaining quality of life.
Collapse
Affiliation(s)
- Fan-ching Lin
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer, Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer, Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
18
|
Type I interferon mimetics bypass vaccinia virus decoy receptor virulence factor for protection of mice against lethal infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1178-84. [PMID: 24964806 DOI: 10.1128/cvi.00204-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors which, according to the model, are initiated by the singular event of cross-linkage of the receptor extracellular domain by the IFN. The IFN has no further function beyond this. The model thus provides no approach to circumventing poxviruses decoy receptors that compete with the IFN receptors for IFNs. This simple event has allowed smallpox virus to decimate human populations throughout the ages. We have developed a noncanonical model of IFN signaling that has resulted in the development of small peptide mimetics to both types I and II IFNs. In this report, we focus on a type I IFN mimetic at positions 152 to 189, IFN-α1(152-189), which corresponds to the C terminus of human IFN-α1. This mimetic functions intracellularly and is thus not recognized by the B18R vaccinia virus decoy receptor. Mimetic synthesized with an attached palmitate (lipo-) for cell penetration protects mice from a lethal dose of vaccinia virus, while the parent IFN-α1 is ineffective. Unlike IFN-α1, the mimetic does not bind to the B18R decoy receptor. It further differs from the parent IFN in that it lacks the toxicity of weight loss and bone marrow suppression in mice while at the same time possessing a strong adjuvant effect on the immune system. The mimetic is thus an innate and adaptive immune regulator that is evidence of the dynamic nature of the noncanonical model of IFN signaling, in stark contrast to the canonical or classical model of signaling.
Collapse
|
19
|
Ahmed CM, Johnson HM. Short peptide type I interferon mimetics: therapeutics for experimental allergic encephalomyelitis, melanoma, and viral infections. J Interferon Cytokine Res 2014; 34:802-9. [PMID: 24811478 DOI: 10.1089/jir.2014.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The classical canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors, which limits the model in terms of specific gene activation, associated epigenetic events, and IFN mimetic development. Accordingly, we have developed a noncanonical model of IFN signaling and report the development of short type I IFN peptide mimetic peptides based on the model. The mimetics, human IFNα1(152-189), human IFNβ(150-187), and ovine IFNτ(156-195) are derived from the C-terminus of the parent IFNs and function intracellularly based on the noncanonical model. Vaccinia virus produces a decoy IFN receptor (B18R) that inhibits type I IFN, but the IFN mimetics bypass B18R for effective antiviral activity. By contrast, both parent IFNs and mimetics inhibited vesicular stomatitis virus. The mimetics also possessed anti-tumor activity against murine melanoma B16 tumor cells in culture and in mice, including synergizing with suppressor of cytokine signaling 1 antagonist. Finally, the mimetics were potent therapeutics against experimental allergic encephalomyelitis, a mouse model of multiple sclerosis. The mimetics lack toxic side effects of the parent IFNs and, thus, are a potent therapeutic replacement of IFNs as therapeutics.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Microbiology and Cell Science, University of Florida , Gainesville, Florida
| | | |
Collapse
|
20
|
Reich NC. STATs get their move on. JAKSTAT 2013; 2:e27080. [PMID: 24470978 PMCID: PMC3891633 DOI: 10.4161/jkst.27080] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms that regulate dynamic localization of a protein within a cell can provide critical insight to its functional molecular interactions. Signal transducers and activators of transcription (STATs) play essential roles in development, proliferation, and immune defense. However the consequences of STAT hyperactivity can predispose to diseases including autoimmunity and cancer. To function as transcription factors STATs must gain access to the nucleus, and knowledge of the mechanisms that regulate STAT nuclear trafficking can provide a means to control STAT action. This review presents a synopsis of some of the studies that address the nuclear dynamics of the STAT proteins. Evidence suggests that not all STATs are the same. Nuclear import of STAT1 and STAT4 appears linked to their tyrosine phosphorylation and the formation of parallel dimers via reciprocal phosphotyrosine and Src homology 2 domain interactions. This dimer arrangement generates a conformational nuclear localization signal. STAT2 is imported continually to the nucleus in an unphosphorylated state due to its association with IRF9, but the dominant nuclear export signal of STAT2 shuttles the complex back to the cytoplasm. Following STAT2 tyrosine phosphorylation, it can form dimers with STAT1 to affect nuclear import as the trimeric complex (ISGF3). Distinctly, STAT3, STAT5, and STAT6 are continually imported to the nucleus independent of tyrosine phosphorylation. Mutational studies indicate the nuclear localization signals in these STATs require the conformational structure of their coiled-coil domains. Increases in STAT nuclear accumulation following cytokine stimulation appear coordinate with their ability to bind DNA.
Collapse
Affiliation(s)
- Nancy C Reich
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| |
Collapse
|