1
|
Damen PJJ, Peters M, Hobbs B, Chen Y, Titt U, Nout R, Mohan R, Lin SH, van Rossum PSN. Defining the Optimal Radiation-induced Lymphopenia Metric to Discern Its Survival Impact in Esophageal Cancer. Int J Radiat Oncol Biol Phys 2025; 122:31-42. [PMID: 39755214 DOI: 10.1016/j.ijrobp.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
PURPOSE A detrimental association between radiation-induced lymphopenia (RIL) and oncologic outcomes in patients with esophageal cancer has been established. However, an optimal metric for RIL remains undefined but is important for the application of this knowledge in clinical decision-making and trial designs. The aim of this study was to find the optimal RIL metric discerning survival. METHODS AND MATERIALS Patients with esophageal cancer treated with concurrent chemoradiation therapy (CRT; 2004-2022) were selected. Studied metrics included absolute lymphocyte counts (ALCs) and neutrophil counts-and calculated derivatives-at baseline and during CRT. Multivariable Cox regression models for progression-free survival (PFS) and overall survival (OS) were developed for each RIL metric. The optimal RIL metric was defined as the one in the model with the highest c-statistic. RESULTS Among 1339 included patients, 68% received photon-based and 32% proton-based CRT (median follow-up, 24.9 months). In multivariable analysis, the best-performing models included "ALC in week 3 of CRT" (corrected c-statistic 0.683 for PFS and 0.662 for OS). At an optimal threshold of <0.5 × 103/μL (ie, grade ≥3 RIL), ALC in week 3 was significantly associated with PFS (adjusted hazard ratio, 1.64; 95% CI, 1.27-2.13) and OS (adjusted hazard ratio, 1.56; 95% CI, 1.15-2.08), with 5-year PFS of 29% vs 40% and OS of 38% vs 51%, respectively. CONCLUSIONS Reaching grade ≥3 RIL in week 3 of CRT for esophageal cancer is the strongest RIL metric to distinguish survival outcomes. We suggest that this metric should be the target for lymphopenia-mitigating strategies and propose this metric to be included in future trials.
Collapse
Affiliation(s)
- Pim J J Damen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands; Department of Radiotherapy, Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Max Peters
- Department of Radiotherapy, Radiotherapiegroep, Deventer, The Netherlands
| | - Brian Hobbs
- Department of Population Health, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Yiqing Chen
- Department of Biostatistics and Data Science, University of Texas Health Science Center, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Remi Nout
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter S N van Rossum
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Giannopoulos K, Karikis I, Byrd C, Sanidas G, Wolff N, Triantafyllou M, Simonti G, Vidva R, Koutroulis I, Theocharis S, Kratimenos P. Eph/ephrin-mediated immune modulation: a potential therapeutic target. Front Immunol 2025; 16:1539567. [PMID: 40330460 PMCID: PMC12053175 DOI: 10.3389/fimmu.2025.1539567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Eph/ephrin signaling, a complex network of cell-cell interactions, plays a pivotal role in regulating various biological processes, including cell migration, proliferation, and adhesion. Dysregulation of this signaling pathway has been implicated in various types of cancer. In skin cancers such as squamous cell carcinoma, basal cell carcinoma, and malignant melanoma, Eph/ephrin signaling promotes tumor invasion and metastasis. Aberrant expression of Eph receptors and ephrin ligands can lead to increased cell motility, reduced cell adhesion, and enhanced angiogenesis. Furthermore, Eph/ephrin signaling can significantly impact the tumor microenvironment by modulating the infiltration and activation of immune cells, particularly T cells. Dysregulated Eph/ephrin expression can impair immune surveillance mechanisms, leading to immune evasion and tumor progression. For instance, certain ephrin ligands can inhibit T-cell activation and promote immunosuppressive conditions within the tumor microenvironment. Targeting Eph/ephrin signaling offers a promising therapeutic approach to combating skin cancer metastasis. By disrupting these signaling pathways, tumor cell invasion, angiogenesis, and immune evasion can be inhibited. This could lead to improved therapeutic outcomes for patients with skin cancer.
Collapse
Affiliation(s)
| | - Ioannis Karikis
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Chad Byrd
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Georgios Sanidas
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Nora Wolff
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Maria Triantafyllou
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Gabriele Simonti
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Robinson Vidva
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
| | - Ioannis Koutroulis
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Stamatios Theocharis
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Panagiotis Kratimenos
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
3
|
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G, Pucillo CEM. B cell immunometabolism in health and disease. Nat Immunol 2025; 26:366-377. [PMID: 39984733 DOI: 10.1038/s41590-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
B cells have crucial roles in the initiation and progression of many pathological conditions, and several therapeutic strategies have targeted the function of these cells. The advent of immunometabolism has provided compelling evidence that the metabolic reprogramming of immune cells can dramatically alter physiopathological immune activities. A better knowledge of the metabolic profiles of B cells can provide valuable means for developing therapies tuning defined cell pathways. Here we review the cellular and molecular mechanisms by which immunometabolism controls the physiology and pathophysiology of B cells and discuss the experimental evidence linking B cell metabolism to health, autoimmunity, and cancer. Considering that several metabolic pathways in B cells are involved differently, or even in opposite ways, in health and disease, we discuss how targeted modulation of B cell immunometabolism could be exploited mechanistically to rebalance abnormal B cell functions that have become altered in disease states.
Collapse
Affiliation(s)
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
| | - Antonio La Cava
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy.
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale 'G. Salvatore' - Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | | |
Collapse
|
4
|
Shrestha P, Ghoreyshi ZS, George JT. How modulation of the tumor microenvironment drives cancer immune escape dynamics. Sci Rep 2025; 15:7308. [PMID: 40025156 PMCID: PMC11873109 DOI: 10.1038/s41598-025-91396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Metastatic disease is the leading cause of cancer-related death, despite recent advances in therapeutic interventions. Prior modeling approaches have accounted for the adaptive immune system's role in combating tumors, which has led to the development of stochastic models that explain cancer immunoediting and tumor-immune co-evolution. However, cancer immune-mediated dormancy, wherein the adaptive immune system maintains a micrometastatic population by keeping its growth in check, remains poorly understood. Immune-mediated dormancy can significantly delay the emergence (and therefore detection) of metastasis. An improved quantitative understanding of this process will thereby improve our ability to identify and treat cancer during the micrometastatic period. Here, we introduce a generalized stochastic model that incorporates the dynamic effects of immunomodulation within the tumor microenvironment on T cell-mediated cancer killing. This broad class of nonlinear birth-death model can account for a variety of cytotoxic T cell immunosuppressive effects, including regulatory T cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells. We develop analytic expressions for the likelihood and mean time of immune escape. We also develop a method for identifying a corresponding diffusion approximation applicable to estimating population dynamics across a wide range of nonlinear birth-death processes. Lastly, we apply our model to estimate the nature and extent of immunomodulation that best explains the timing of disease recurrence in bladder and breast cancer patients. Our findings quantify the effects that stochastic tumor-immune interaction dynamics can play in the timing and likelihood of disease progression. Our analytical approximations provide a method of studying population escape in other ecological contexts involving nonlinear transition rates.
Collapse
Affiliation(s)
- Pujan Shrestha
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Zahra S Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Jason T George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
5
|
Skurikhin EG, Ermakova NN, Zhukova MA, Pan ES, Zharkikh IL, Pan VY, Kubatiev AA, Morozov SG, Skurikhina VE, Minakova MY, Pershina OV, Dygai AM. Consequences of Reprogrammed CD8 + T-Cell Therapy for Lewis Lung Carcinoma Cells and Neovasculogenesis in C57BL/6 Mice. Bull Exp Biol Med 2024; 178:244-249. [PMID: 39762692 DOI: 10.1007/s10517-025-06315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 01/15/2025]
Abstract
We studied the effect of reprogrammed CD8+ T cells (rT cells) from the bone marrow of intact mice on tumor cells and neovasculogenesis in mice with orthotopic Lewis lung carcinoma (LLC). Reprogramming of T cells was carried out using a MEK inhibitor and a PD-1 blocker; the targeting of rT cells to tumor cells was achieved by preincubation with LLC cell lysate. It was shown that the antitumor effect of rT cells was based on apoptosis of tumor cells. In addition, cell therapy reduced the number of endothelial cells (CD45-CD309+) and angiogenic cell precursors (CD45-CD117+CD309+), mesenchymal stem cells (CD45-CD31-CD34-CD44+), myeloid (CD45+CD34+CD31-) and non-myeloid (CD45+CD34-CD31-) fibrocytes, and leukocytes (CD45+) in the lungs and increased their number in the blood. Thus, rT cells impaired the recruitment of neovasculogenic cells to the lung. The antitumor effects of rT cells are superior to those of naive CD8+ T cells. The proposed reprogramming method can be useful in developing effective approaches to the therapy of lung cancer, as it allows obtaining cytotoxic rT cells capable of reducing the activity of neovasculogenesis.
Collapse
Affiliation(s)
- E G Skurikhin
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N N Ermakova
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M A Zhukova
- Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - E S Pan
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I L Zharkikh
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V Yu Pan
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - A A Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - S G Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V E Skurikhina
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M Yu Minakova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O V Pershina
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A M Dygai
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
6
|
Chen JW, Gong RH, Teng C, Lin YS, Shen LS, Lin Z, Chen S, Chen GQ. Identification of a PANoptosis-related prognostic model in triple-negative breast cancer, from risk assessment, immunotherapy, to personalized treatment. Heliyon 2024; 10:e38732. [PMID: 39430460 PMCID: PMC11489348 DOI: 10.1016/j.heliyon.2024.e38732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Triple-negative breast cancer is a breast cancer subtype characterized by its challenging prognosis, and establishing prognostic models aids its clinical treatment. PANoptosis, a recently identified type of programmed cell death, influences tumor growth and patient outcomes. Nonetheless, the precise impact of PANoptosis-related genes on the prognosis of triple-negative breast cancer has yet to be determined. Methods Clinical information for the triple-negative breast cancer samples was collected from the Gene Expression Omnibus and The Cancer Genome Atlas databases, while 19 PANoptosis-related genes were sourced from previous studies. We first categorized PANoptosis-related subtypes and determined the differentially expressed genes between them. Subsequently, we developed and validated a PANoptosis-associated predictive model using LASSO and Cox multivariate regression analyses. Statistical evaluations were conducted using R software, and the mRNA expression levels of the genes were quantified using real-time PCR. Results Using consensus clustering analysis, we divided triple-negative breast cancer patients into two clusters based on PANoptosis-related genes and identified 1054 differentially expressed genes between these clusters. Prognostic-related genes were subsequently selected to re-cluster patients, validating their predictive ability. A prognostic model was then constructed based on four genes: BTN2A2, CACNA1H, PIGR, and S100B. The expression and enriched cell types of these genes were examined and the expression levels were validated in vitro. Furthermore, the model was validated, and a nomogram was created to enhance personalized risk assessment. The risk score, proven to be an independent prognostic indicator for triple-negative breast cancer, showed a positive correlation with both age and disease stage. Immune infiltration and drug sensitivity analyses suggested appropriate therapies for different risk groups. Mutation profiles and pathway enrichment were analyzed, providing insights into potential therapeutic targets. Conclusion A PANoptosis-related prognostic model was successfully developed for triple-negative breast cancer, offering a novel approach for predicting patient prognosis and guiding treatment strategies.
Collapse
Affiliation(s)
- Jia-Wen Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Chi Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Zesi Lin
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Guo-Qing Chen
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| |
Collapse
|
7
|
Fan G, Yu B, Tang L, Zhu R, Chen J, Zhu Y, Huang H, Zhou L, Liu J, Wang W, Tao Z, Zhang F, Yu S, Lu X, Cao Y, Du S, Li H, Li J, Zhang J, Ren H, Gires O, Liu H, Wang X, Qin J, Wang H. TSPAN8 + myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci Transl Med 2024; 16:eadj5705. [PMID: 38569015 DOI: 10.1126/scitranslmed.adj5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant stromal cells in the tumor microenvironment that promote cancer progression and relapse. However, the heterogeneity and regulatory roles of CAFs underlying chemoresistance remain largely unclear. Here, we performed a single-cell analysis using high-dimensional flow cytometry analysis and identified a distinct senescence-like tetraspanin-8 (TSPAN8)+ myofibroblastic CAF (myCAF) subset, which is correlated with therapeutic resistance and poor survival in multiple cohorts of patients with breast cancer (BC). TSPAN8+ myCAFs potentiate the stemness of the surrounding BC cells through secretion of senescence-associated secretory phenotype (SASP)-related factors IL-6 and IL-8 to counteract chemotherapy. NAD-dependent protein deacetylase sirtuin 6 (SIRT6) reduction was responsible for the senescence-like phenotype and tumor-promoting role of TSPAN8+ myCAFs. Mechanistically, TSPAN8 promoted the phosphorylation of ubiquitin E3 ligase retinoblastoma binding protein 6 (RBBP6) at Ser772 by recruiting MAPK11, thereby inducing SIRT6 protein destruction. In turn, SIRT6 down-regulation up-regulated GLS1 and PYCR1, which caused TSPAN8+ myCAFs to secrete aspartate and proline, and therefore proved a nutritional niche to support BC outgrowth. By demonstrating that TSPAN8+SIRT6low myCAFs were tightly associated with unfavorable disease outcomes, we proposed that the combined regimen of anti-TSPAN8 antibody and SIRT6 activator MDL-800 is a promising approach to overcome chemoresistance. These findings highlight that senescence contributes to CAF heterogeneity and chemoresistance and suggest that targeting TSPAN8+ myCAFs is a promising approach to circumvent chemoresistance.
Collapse
Affiliation(s)
- Guangjian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Bo Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Tang
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, China
| | - Rongxuan Zhu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianhua Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200243, China
| | - Liying Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200243, China
| | - Jun Liu
- Department of Breast-thyroid Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Wang
- Department of Breast-thyroid Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengchun Zhang
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, China
| | - Siwei Yu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Yuan Cao
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shaoqian Du
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huihui Li
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province 271016, China
| | - Junjian Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 342500, China
| | - He Ren
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich 80336, Germany
| | - Haikun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Xin Wang
- Department of Surgery, Chinese University of Hong Kong Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongxia Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
9
|
García ÁB, Infante de la Torre JR, Carbonero RB, Esteve AM, Barragan VV, Vicente JS, Granero PJ, Costero AU. Prognostic value of haematological parameters and [ 18F]FDG PET/CT metabolic parameters in head and neck cancer. Rev Esp Med Nucl Imagen Mol 2024; 43:31-38. [PMID: 37863392 DOI: 10.1016/j.remnie.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
AIM To determine the usefulness of neutrophil/lymphocyte (N/L) and platelet/lymphocyte (P/L) ratios as well as quantitative [18F]FDG PET/CT parameters as prognostic factors for overall survival (OS), cancer-specific survival (CSS) and progression-free survival (PFS) in patients with head and neck squamous cell carcinoma (HyN). MATERIAL AND METHODS Sixty-six patients (56 men) diagnosed with HyN carcinoma were retrospectively assessed over an 8-year interval. Maximum SUV (SUVmax), metabolic tumour volume (MTV) and total lesion glycolysis (TLG) parameters were determined from the PET/CT study at diagnosis. After treatment with chemoradiotherapy, patient survival was assessed. The Cox regression model and the Kaplan-Meier method were used to analyse prognostic factors and survival curves. RESULTS Median follow-up was 50.4 months, with 39 recurrences-progressions and 39 deaths. In the univariate analysis, metabolic parameters, except SUVmax, were predictive factors for all three survivals and the two blood parameters were predictive for OS and EFS. TLG was the only predictive factor in the multivariate analysis. The three survival curves were significantly different for the metabolic parameters and the OS curve for the N/L ratio. Correlations were seen between N/L ratio, MTV and TLG. No correlations were demonstrated between P/L ratio and metabolic parameters. CONCLUSION The use of haematological and metabolic markers would allow to identify patients with a high risk of recurrences and por survival and to individualise treatment by applying more aggressive therapies.
Collapse
Affiliation(s)
- Álvaro Baena García
- Servicio de Medicina Nuclear, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain
| | - Jose Rafael Infante de la Torre
- Servicio de Medicina Nuclear, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain
| | - Raquel Barco Carbonero
- Servicio de Medicina Nuclear, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain
| | - Andrés Martínez Esteve
- Servicio de Medicina Nuclear, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain
| | - Victoria Vera Barragan
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain
| | - Justo Serrano Vicente
- Servicio de Medicina Nuclear, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain.
| | - Pedro Jiménez Granero
- Servicio de Medicina Nuclear, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain
| | - Ana Utrera Costero
- Servicio de Medicina Nuclear, Complejo Hospitalario Universitario de Badajoz, Carretera de Portugal s/n, E-06080 Badajoz, Spain
| |
Collapse
|
10
|
Cortiula F, Hendriks LEL, Wijsman R, Houben R, Steens M, Debakker S, Canters R, Trovò M, Sijtsema NM, Niezink AGH, Unipan M, Urban S, Michelotti A, Dursun S, Bootsma G, Hattu D, Nuyttens JJ, Moretti E, Taasti VT, De Ruysscher D. Proton and photon radiotherapy in stage III NSCLC: Effects on hematological toxicity and adjuvant immune therapy. Radiother Oncol 2024; 190:110019. [PMID: 38000689 DOI: 10.1016/j.radonc.2023.110019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND PURPOSE Concurrent chemo-radiotherapy (CCRT) followed by adjuvant durvalumab is standard-of-care for fit patients with unresectable stage III NSCLC. Intensity modulated proton therapy (IMPT) results in different doses to organs than intensity modulated photon therapy (IMRT). We investigated whether IMPT compared to IMRT reduce hematological toxicity and whether it affects durvalumab treatment. MATERIALS AND METHODS Prospectively collected series of consecutive patients with stage III NSCLC receiving CCRT between 06.16 and 12.22 (staged with FDG-PET-CT and brain imaging) were retrospectively analyzed. The primary endpoint was the incidence of lymphopenia grade ≥ 3 in IMPT vs IMRT treated patients. RESULTS 271 patients were enrolled (IMPT: n = 71, IMRT: n = 200) in four centers. All patients received platinum-based chemotherapy. Median age: 66 years, 58 % were male, 36 % had squamous NSCLC. The incidence of lymphopenia grade ≥ 3 during CCRT was 67 % and 47 % in the IMRT and IMPT group, respectively (OR 2.2, 95 % CI: 1.0-4.9, P = 0.03). The incidence of anemia grade ≥ 3 during CCRT was 26 % and 9 % in the IMRT and IMPT group respectively (OR = 4.9, 95 % CI: 1.9-12.6, P = 0.001). IMPT was associated with a lower rate of Performance Status (PS) ≥ 2 at day 21 and 42 after CCRT (13 % vs. 26 %, P = 0.04, and 24 % vs. 39 %, P = 0.02). Patients treated with IMPT had a higher probability of receiving adjuvant durvalumab (74 % vs. 52 %, OR 0.35, 95 % CI: 0.16-0.79, P = 0.01). CONCLUSION IMPT was associated with a lower incidence of severe lymphopenia and anemia, better PS after CCRT and a higher probability of receiving adjuvant durvalumab.
Collapse
Affiliation(s)
- Francesco Cortiula
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Medical Oncology, University Hospital of Udine, Udine, Italy.
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Michelle Steens
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Sarah Debakker
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marco Trovò
- Department of Radiation Oncology, University Hospital of Udine, Udine, Italy
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne G H Niezink
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Susanna Urban
- Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - Anna Michelotti
- Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - Safiye Dursun
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gerben Bootsma
- Department of Pulmonary Diseases, Zuyderland Medical Centre, the Netherlands
| | - Djoya Hattu
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Joost J Nuyttens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eugenia Moretti
- Medical Physics Unit, University Hospital of Udine, Udine, Italy
| | - Vicki T Taasti
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
11
|
Odoh CK, Xue H, Zhao ZK. Exogenous glucosylglycerol and proline extend the chronological lifespan of Rhodosporidium toruloides. Int Microbiol 2023; 26:807-819. [PMID: 36786919 DOI: 10.1007/s10123-023-00336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Glucosylglycerol (GG) is an osmolyte found in a few bacteria (e.g., cyanobacteria) and plants grown in harsh environments. GG protects microbes and plants from salinity and desiccation stress. In the industry, GG is synthesized from a combination of ADP-glucose and glycerol-3-phosphate in a condensation reaction catalyzed by glucosylglycerol phosphate synthase. Proline, on the other hand, is an amino acid-based osmolyte that plays a key role in cellular reprograming. It functions as a protectant and a scavenger of reactive oxygen species. Studies on lifespan extension have focused on the use of Saccharomyces cerevisiae. Rhodosporidium toruloides, also known as Rhodotorula toruloides, is a basidiomycetous oleaginous yeast known to accumulate lipids to more than 70% of its dry cell weight. The oleaginous red yeast (R. toruloides) has not been intensely studied in the lifespan domain. We designed this work to investigate how GG and proline promote the longevity of this red yeast strain. The results obtained in our study confirmed that these molecules increased R. toruloides' viability, survival percentage, and lifespan upon supplementation. GG exerts the most promising effects at a relatively high concentration (100 mM), while proline functions best at a low level (2 mM). Elucidation of the processes underlying these favorable responses revealed that GG promotes the yeast chronological lifespan (CLS) through increased catalase activity, modulation of the culture medium pH, a rise in ATP, and an increase in reactive oxygen species (ROS) accumulation (mitohormesis). It is critical to understand the mechanisms of these geroprotector molecules, particularly GG, and the proclivity of its lifespan application; this will aid in offering clarity on its potential application in aging research.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haizhao Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
12
|
Xu Y, Mao Y, Lv Y, Tang W, Xu J. B cells in tumor metastasis: friend or foe? Int J Biol Sci 2023; 19:2382-2393. [PMID: 37215990 PMCID: PMC10197893 DOI: 10.7150/ijbs.79482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastasis is an important cause of cancer-related death. Immunotherapy may be an effective way to prevent and treat tumor metastasis in the future. Currently, many studies have focused on T cells, whereas fewer have focused on B cells and their subsets. B cells play an important role in tumor metastasis. They not only secrete antibodies and various cytokines but also function in antigen presentation to directly or indirectly participate in tumor immunity. Furthermore, B cells are involved in both inhibiting and promoting tumor metastasis, which demonstrates the complexity of B cells in tumor immunity. Moreover, different subgroups of B cells have distinct functions. The functions of B cells are also affected by the tumor microenvironment, and the metabolic homeostasis of B cells is also closely related to their function. In this review, we summarize the role of B cells in tumor metastasis, analyze the mechanisms of B cells, and discuss the current status and prospects of B cells in immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Wentao Tang
- ✉ Corresponding authors: Jianmin Xu, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail: ; Wentao Tang, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail:
| | - Jianmin Xu
- ✉ Corresponding authors: Jianmin Xu, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail: ; Wentao Tang, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail:
| |
Collapse
|
13
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Jiang S, Feng R, Tian Z, Zhou J, Zhang W. Metabolic dialogs between B cells and the tumor microenvironment: Implications for anticancer immunity. Cancer Lett 2023; 556:216076. [PMID: 36724837 DOI: 10.1016/j.canlet.2023.216076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Immunometabolism, a branch of biology describing the link between immunity and metabolism, is an emerging topic in cancer immunology. It is currently well accepted that B cells and tertiary lymph structures formed by them are associated with favorable outcomes when patients undergo cancer immunotherapy. Understanding the determinants of B-cell fate and function in cancer patients is necessary for improving cancer immunotherapy. Accumulating evidence points to the tumor microenvironment being a critical metabolic hurdle to an efficient antitumor B-cell response. At the same time, several B-cell-derived metabolites have recently been reported to inhibit anticancer immunity. In this literature review, key B-cell immunometabolism studies and the metabolic life of B cells were summarized. Then, we discussed the intrinsic metabolic pathways of B cells themselves and how the tumor microenvironment and B cells in tumors metabolically influence each other. Finally, we pointed out key questions to provide some inspiration for further study of the role of B-cell immunometabolism in the antitumor immune response.
Collapse
Affiliation(s)
- Su Jiang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ranran Feng
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Zhang X, Tai Z, Miao F, Huang H, Zhu Q, Bao L, Chen Z. Metabolism heterogeneity in melanoma fuels deactivation of immunotherapy: Predict before protect. Front Oncol 2022; 12:1046102. [PMID: 36620597 PMCID: PMC9813867 DOI: 10.3389/fonc.2022.1046102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant melanoma is widely acknowledged as the most lethal skin malignancy. The metabolic reprogramming in melanoma leads to alterations in glycolysis and oxidative phosphorylation (OXPHOS), forming a hypoxic, glucose-deficient and acidic tumor microenvironment which inhibits the function of immune cells, resulting in a low response rate to immunotherapy. Therefore, improving the tumor microenvironment by regulating the metabolism can be used to improve the efficacy of immunotherapy. However, the tumor microenvironment (TME) and the metabolism of malignant melanoma are highly heterogeneous. Therefore, understanding and predicting how melanoma regulates metabolism is important to improve the local immune microenvironment of the tumor, and metabolism regulators are expected to increase treatment efficacy in combination with immunotherapy. This article reviews the energy metabolism in melanoma and its regulation and prediction, the integration of immunotherapy and metabolism regulators, and provides a comprehensive overview of future research focal points in this field and their potential application in clinical treatment.
Collapse
Affiliation(s)
- Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China,Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Zhongjian Chen, ; Leilei Bao,
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Zhongjian Chen, ; Leilei Bao,
| |
Collapse
|
16
|
Abstract
Significance: Immune cell therapy involves the administration of immune cells into patients, and it has emerged as one of the most common type of immunotherapy for cancer treatment. Knowledge on the biology and metabolism of the adoptively transferred immune cells and the metabolic requirements of different cell types in the tumor is fundamental for the development of immune cell therapy with higher efficacy. Recent Advances: Adoptive T cell therapy has been shown to be effective in limited types of cancer. Different types and generations of adoptive T cell therapies have evolved in the recent decade. This review covers the basic principles and development of these therapies in cancer treatment. Critical Issues: Our review provides an overview on the basic concepts on T cell metabolism and highlights the metabolic requirements of T and adoptively transferred T cells. Future Directions: Integrating the knowledge just cited will facilitate the development of strategies to maximize the expansion of adoptively transferred T cells ex vivo and in vivo and to promote their durability and antitumor effects. Antioxid. Redox Signal. 37, 1303-1324.
Collapse
Affiliation(s)
- Ge Hui Tan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Carmen Chak-Lui Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Center for Oncology and Immunology, Hong Kong Science Park, Hong Kong, SAR, China
| |
Collapse
|
17
|
Xie X, Feng Y, Zhang H, Su Q, Song T, Yang G, Li N, Wei X, Li T, Qin X, Li S, Wu C, Zhang X, Wang G, Liu Y, Yang H. Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy. Bioact Mater 2022; 16:107-119. [PMID: 35386322 PMCID: PMC8958467 DOI: 10.1016/j.bioactmat.2022.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical outcomes of cancer nanovaccine have been largely impeded owing to the low antigen-specific T cell response rate and acquired resistance caused by the immunosuppressive tumor microenvironment (TME). Here, we reported a tumor acidity-responsive nanovaccine to remodel the immunosuppressive TME and expand the recruitment of tumor infiltrating lymphocytes (TILs) using hybrid micelles (HM), which encapsulated colony stimulating factor 1 receptor (CSF1-R) inhibitor BLZ-945 and indoleamine 2,3-dioxygenase (IDO) inhibitor NLG-919 in its core and displayed a model antigen ovalbumin (OVA) on its surface (denoted as BN@HM-OVA). The bioactive nanovaccine is coated with a polyethylene glycol (PEG) shell for extending nanoparticle circulation. The shell can be shed in response to the weakly acidic tumor microenvironment. The decrease in size and the increase in positive charge may cause the deep tumor penetration of drugs. We demonstrated that the bioactive nanovaccine dramatically enhance antigen presentation by dendritic cells (DCs) and drugs transportation into M1-like tumor-associated macrophages (TAMs) and tumor cells via size reduction and increasing positive charge caused by the weakly acidic TME. Such bioactive nanovaccine could remodel the immunosuppressive TME into an effector T cells favorable environment, leading to tumor growth inhibition in prophylactic and therapeutic E.G7-OVA tumor models. Furthermore, combining the bioactive nanovaccine with simultaneous anti-PD-1 antibody treatment leads to a long-term tumor inhibition, based on the optimal timing and sequence of PD-1 blockade against T cell receptor. This research provides a new strategy for the development of efficient cancer immunotherapy. A bioactive nanovaccine (BN@HM-OVA) was adopted for synergistic immunotherapy of E.G7-OVA tumors. BN@HM-OVA exhibited superior ability to induce DCs maturation and robust antigen-specific T cell responses. BN@HM-OVA contributed to a homeostasis in the tumor microenvironment ideal for antitumor vaccination. The combination treatment of BN@HM-OVA and αPD-1 achieved maximum therapeutic benefits.
Collapse
|
18
|
Aggarwal V, Rathod S, Vashishth K, Upadhyay A. Immune Cell Metabolites as Fuel for Cancer Cells. IMMUNO-ONCOLOGY CROSSTALK AND METABOLISM 2022:153-186. [DOI: 10.1007/978-981-16-6226-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Morsy S, Abd-Ellatif R, Soliman N, Ibrahim W. Effect of zinc oxide nanoparticles on cellular stress in Ehrlich ascites carcinoma. TANTA MEDICAL JOURNAL 2022; 50:351. [DOI: 10.4103/tmj.tmj_112_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Werner J, Strobel K, Lehnick D, Rajan GP. Overall Neutrophil-to-Lymphocyte Ratio and SUV max of Nodal Metastases Predict Outcome in Head and Neck Cancer Before Chemoradiation. Front Oncol 2021; 11:679287. [PMID: 34692472 PMCID: PMC8534919 DOI: 10.3389/fonc.2021.679287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction This study investigates the pretherapeutic neutrophil-to-lymphocyte ratio (NLR) with markers of tumor metabolism in 18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and their potential prognostic value in head and neck cancer patients prior to primary chemoradiation. Materials and Methods NLR and metabolic markers of primary tumor and nodal metastases including maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were retrospectively assessed in a consecutive cohort of head and neck squamous cell cancer patients undergoing primary chemoradiation. The main outcome measure was survival. Results The study included 90 patients of which 74 had lymph node metastases at diagnosis. Median follow-up time of nodal positive patients (n=74) was 26.5 months (IQR 18-44). The NLR correlated significantly with metabolic markers of the primary tumor (TLG: rs=0.47, P<0.001; MTV: rs=0.40, P<0.001; SUVmax: rs=0.34, P=0.003), but much less with FDG-PET/CT surrogate markers of metabolic activity in nodal metastases (TLG: rs=0.15, P=0.19; MTV: rs=0.25, P=0.034; SUVmax: rs=0.06, P=0.63). For nodal positive cancer patients, multivariate analysis showed that an increased NLR (HR=1.19, 95% CI=1.04-1.37, P=0.012) and SUVmax of lymph node metastasis (HR=1.09; 95% CI=0.99-1.19; P=0.081) are independently predictive of disease-specific survival. High NLR had a negative prognostic value for overall survival (HR=1.16, 95% CI=1.02-1.33, P=0.021). Conclusion NLR correlates positively with metabolic markers of the primary tumor, suggestive of an unspecific inflammatory response in the host as a possible reflection of increased metabolism of the primary tumor. SUVmax of lymph node metastases and the NLR, however, show no correlation and are independently predictive of disease-specific survival. Therefore, their addition could be used to improve survival prediction in nodal positive head and neck cancer patients undergoing primary chemoradiation.
Collapse
Affiliation(s)
- Jonas Werner
- Department of Otorhinolaryngology - Head and Neck Surgery, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Dirk Lehnick
- Department of Health Sciences and Medicine, Biostatistics & Methodology, University of Lucerne, Lucerne, Switzerland
| | - Gunesh P Rajan
- Department of Otorhinolaryngology - Head and Neck Surgery, Cantonal Hospital Lucerne, Lucerne, Switzerland.,Otolaryngology, Head & Neck Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
21
|
De Lerma Barbaro A, Palano MT, Cucchiara M, Gallazzi M, Mortara L, Bruno A. Metabolic Rewiring in the Tumor Microenvironment to Support Immunotherapy: A Focus on Neutrophils, Polymorphonuclear Myeloid-Derived Suppressor Cells and Natural Killer Cells. Vaccines (Basel) 2021; 9:vaccines9101178. [PMID: 34696286 PMCID: PMC8539473 DOI: 10.3390/vaccines9101178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Leukocytes often undergo rapid changes in cell phenotype, for example, from a resting to an activated state, which places significant metabolic demands on the cell. These rapid changes in metabolic demand need to be tightly regulated to support immune cell effector functions during the initiation and downregulation of an immune response. Prospects for implementing cancer immunotherapy also rest on the idea of optimizing the metabolic profile of immune cell effectors. Here, we examine this issue by focusing on neutrophils and NK cells as cells of increasing interest in cancer immunology and tumor immunometabolism, because they can be targeted or, in the case of NK, used as effectors in immunotherapy. In addition, neutrophils and NK cells have been shown to functionally interact. In the case of neutrophils, we also extended our interest to polymorphonuclear MDSC (PMN-MDSCs), since the granulocytic subset of MDSCs share many phenotypes and are functionally similar to pro-tumor neutrophils. Finally, we reviewed relevant strategies to target tumor metabolism, focusing on neutrophils and NK cells.
Collapse
Affiliation(s)
- Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence: (A.D.L.B.); (A.B.)
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20100 Milan, Italy; (M.T.P.); (M.C.)
| | - Martina Cucchiara
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20100 Milan, Italy; (M.T.P.); (M.C.)
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (M.G.); (L.M.)
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (M.G.); (L.M.)
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20100 Milan, Italy; (M.T.P.); (M.C.)
- Correspondence: (A.D.L.B.); (A.B.)
| |
Collapse
|
22
|
The Influence of Severe Radiation-Induced Lymphopenia on Overall Survival in Solid Tumors: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2021; 111:936-948. [PMID: 34329738 DOI: 10.1016/j.ijrobp.2021.07.1695] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Emerging evidence suggests a detrimental prognostic association between radiation-induced lymphopenia (RIL) and pathologic response, progression-free survival, and overall survival (OS) in patients who undergo radiation therapy for cancer. The aim of this study was to systematically review and meta-analyze the prognostic impact of RIL on OS in patients with solid tumors. METHODS AND MATERIALS PubMed/MEDLINE and Embase were systematically searched. The analysis included intervention and prognostic studies that reported on the prognostic relationship between RIL and survival in patients with solid tumors. An overall pooled adjusted hazard ratio (aHR) was calculated using a random-effects model. Subgroup analyses for different patient-, tumor-, treatment-, and study-related characteristics were performed using meta-regression. RESULTS Pooling of 21 cohorts within 20 eligible studies demonstrated a statistically significant association between OS and grade ≥3 versus grade 0-2 RIL (n = 16; pooled aHR, 1.65; 95% confidence interval [CI], 1.43-1.90) and grade 4 RIL versus grade 0-3 (n = 5; aHR, 1.53; 95% CI, 1.24-1.90). Moderate heterogeneity among aHRs was observed, mostly attributable to overestimated aHRs in 7 studies likely subject to model-overfitting. Subgroup analysis showed significant prognostic impact of grade ≥3 RIL in 4 brain tumor (aHR, 1.63; 95% CI, 1.06-2.51), 4 lung cancer (aHR, 1.52; 95% CI, 1.01-2.29), and 3 pancreatic cancer (aHR, 1.92; 95% CI, 1.10-3.36) cohorts. CONCLUSIONS This meta-analysis demonstrates a significant detrimental prognostic association between grade ≥3 lymphopenia and OS in patients receiving radiation therapy for solid tumors. This finding appears consistent for tumors of the brain, thorax, and upper abdomen and provides an imperative to further elucidate the potential survival benefit of lymphopenia-mitigating strategies.
Collapse
|
23
|
Immunotherapy Using Oxygenated Water and Tumor-Derived Exosomes Potentiates Antitumor Immune Response and Attenuates Malignancy Tendency in Mice Model of Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529484. [PMID: 34194604 PMCID: PMC8181112 DOI: 10.1155/2021/5529484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer is one of the most common type of tumor and the leading cause of death in the world's female population. Various therapeutic approaches have been used to treat tumors but have not led to complete recovery and have even damaged normal cells in the body. Moreover, metastatic tumors such as breast cancer are much more resistant to treatment, and current treatments have not been very successful in treating them and remain a challenge. Therefore, new approaches should be applied to overcome this problem. Given the importance of hypoxia in tumor survival, we aimed to test the antitumor effects of oxygenated water to decrease hypoxia along with tumor-derived exosomes to target tumor. The purpose of administering oxygenated water and tumor exosomes was to reduce hypoxia and establish an effective immune response against tumor antigens, respectively. For this purpose, the breast cancer mice model was induced using the 4T1 cell line in Balb/c mice and treated with oxygenated water via an intratumoral (IT) and/or intraperitoneal (IP) route and/or exosome (TEX). Oxygenation via the IT+IP route was more efficient than oxygenation via the IT or IP route. The efficiency of oxygenation via the two routes along with TEX led to the best therapeutic outcome. Antitumor immune responses directed by TEX became optimized when systemic (IP) and local (IT) oxygenation was applied compared to administration of TEX alone. Results demonstrated a significant reduction in tumor size and the highest levels of IFN-γ and IL-17 and the lowest levels of IL-4 FoxP3, HIF-1α, VEGF, MMP-2, and MMP-9 in the IT+IP+TEX-treated group. Oxygenated water on the one hand could reduce tumor size, hypoxia, angiogenesis, and metastasis in the tumor microenvironment and on the other hand increases the effective immune response against the tumor systemically. This therapeutic approach is proposed as a new strategy for devising vaccines in a personalized approach.
Collapse
|
24
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
25
|
Hu X, Que W, Hirano H, Wang Z, Nozawa N, Ishii T, Ishizuka M, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhu P, Guo WZ, Li XK. 5-Aminolevulinic acid/sodium ferrous citrate enhanced the antitumor effects of programmed cell death-ligand 1 blockade by regulation of exhausted T cell metabolism in a melanoma model. Cancer Sci 2021; 112:2652-2663. [PMID: 33934440 PMCID: PMC8253271 DOI: 10.1111/cas.14930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are key cytoplasmic organelles. Their activation is critical for the generation of T cell proliferation and cytotoxicity. Exhausted tumor‐infiltrating T cells show a decreased mitochondrial function and mass. 5‐Aminolevulinic acid (5‐ALA), a natural amino acid that is only produced in the mitochondria, has been shown to influence metabolic functions. We hypothesized that 5‐ALA with sodium ferrous citrate (SFC) might provide metabolic support for tumor‐infiltrating T cells. In a mouse melanoma model, we found that 5‐ALA/SFC with a programmed cell death‐ligand 1 (PD‐L1) blocking Ab synergized tumor regression. After treatment with 5‐ALA/SFC and anti‐PD‐L1 Ab, tumor infiltrating lymphocytes (TILs) were not only competent for the production of cytolytic particles and cytokines (granzyme B, interleukin‐2, and γ‐interferon) but also showed enhanced Ki‐67 activity (a proliferation marker). The number of activated T cells (PD‐1+Tim‐3−) was also significantly increased. Furthermore, we found that 5‐ALA/SFC activated the mitochondrial functions, including the oxygen consumption rate, ATP level, and complex V expression. The mRNA levels of Nrf‐2, HO‐1, Sirt‐1, and PGC‐1α and the protein levels of Sirt‐1 were upregulated by treatment with 5‐ALA/SFC. Taken together, our findings revealed that 5‐ALA/SFC could be a key metabolic regulator in exhausted T cell metabolism and suggested that 5‐ALA/SFC might synergize with anti‐PD‐1/PD‐L1 therapy to boost the intratumoral efficacy of tumor‐specific T cells. Our study not only revealed a new aspect of immune metabolism, but also paved the way to develop a strategy for combined anti‐PD‐1/PD‐L1 cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Hasumi International Research Foundation, Tokyo, Japan
| | - Zhidan Wang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Freen-van Heeren JJ. Post-transcriptional control of T-cell cytokine production: Implications for cancer therapy. Immunology 2021; 164:57-72. [PMID: 33884612 DOI: 10.1111/imm.13339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
As part of the adaptive immune system, T cells are vital for the eradication of infected and malignantly transformed cells. To perform their protective function, T cells produce effector molecules that are either directly cytotoxic, such as granzymes, perforin, interferon-γ and tumour necrosis factor α, or attract and stimulate (immune) cells, such as interleukin-2. As these molecules can also induce immunopathology, tight control of their production is required. Indeed, inflammatory cytokine production is regulated on multiple levels. Firstly, locus accessibility and transcription factor availability and activity determine the amount of mRNA produced. Secondly, post-transcriptional mechanisms, influencing mRNA splicing/codon usage, stability, decay, localization and translation rate subsequently determine the amount of protein that is produced. In the immune suppressive environments of tumours, T cells gradually lose the capacity to produce effector molecules, resulting in tumour immune escape. Recently, the role of post-transcriptional regulation in fine-tuning T-cell effector function has become more appreciated. Furthermore, several groups have shown that exhausted or dysfunctional T cells from cancer patients or murine models possess mRNA for inflammatory mediators, but fail to produce effector molecules, hinting that post-transcriptional events also play a role in hampering tumour-infiltrating lymphocyte effector function. Here, the post-transcriptional regulatory events governing T-cell cytokine production are reviewed, with a specific focus on the importance of post-transcriptional regulation in anti-tumour responses. Furthermore, potential approaches to circumvent tumour-mediated dampening of T-cell effector function through the (dis)engagement of post-transcriptional events are explored, such as CRISPR/Cas9-mediated genome editing or chimeric antigen receptors.
Collapse
|
27
|
Lee JY, Chaudhuri O. Modeling the tumor immune microenvironment for drug discovery using 3D culture. APL Bioeng 2021; 5:010903. [PMID: 33564739 PMCID: PMC7857858 DOI: 10.1063/5.0030693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
A few decades ago, the notion that a patient's own immune system could recognize and eliminate tumor cells was highly controversial; now, it is the basis for a thriving new field of cancer research, cancer immunology. With these new immune-based cancer treatments come the need for new complex preclinical models to assess their efficacy. Traditional therapeutics have often targeted the intrinsic growth of cancer cells and could, thus, be modeled with 2D monoculture. However, the next generation of therapeutics necessitates significantly greater complexity to model the ability of immune cells to infiltrate, recognize, and eliminate tumor cells. Modeling the physical and chemical barriers to immune infiltration requires consideration of extracellular matrix composition, architecture, and mechanobiology in addition to interactions between multiple cell types. Here, we give an overview of the unique properties of the tumor immune microenvironment, the challenges of creating physiologically relevant 3D culture models for drug discovery, and a perspective on future opportunities to meet this significant challenge.
Collapse
Affiliation(s)
- Joanna Y. Lee
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California 94080, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
28
|
Ham J, Wang B, Po JW, Singh A, Niles N, Lee CS. Cancer-associated fibroblasts (CAFs) in thyroid papillary carcinoma: molecular networks and interactions. J Clin Pathol 2021; 74:759-765. [PMID: 33619218 DOI: 10.1136/jclinpath-2020-207357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023]
Abstract
In 1989, Stephen Paget proposed the 'seed and soil' theory of cancer metastasis. This theory has led to previous researchers focusing on the role of a tumour as a cancer seed and antiangiogenesis agents as cancer soil fumigant; for the latter to be effective, it is important for them to be able to distinguish cancer cells from stromal cells. However, antiangiogenesis agents have not produced dramatic survival benefits in vivo. This may be related to their inability to destroy the supporting stroma that promote cancer cell growth. Therefore, in order to effectively arrest cancer cell growth for therapeutic purposes, a paradigm shift is required in our fundamental approach to decipher the molecular events and networks in the stromal environment that cancer cells can thrive and proliferate. The pathogenesis of cancer is a multidimensional process of pathological molecular and cellular pathways, influencing different stromal properties and achieving a mutually negotiated crosstalk between cancer cells and stromal cells. This review summarises the clinical presentation of current knowledge of classical papillary thyroid carcinoma (PTC), emerging molecular diagnostics and future directions of classical PTC research.
Collapse
Affiliation(s)
- Jeehoon Ham
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph William Po
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Surgical Innovation Unit, Department of Surgery, Westmead Hospital, Sydney, New South Wales, Australia
| | - Amandeep Singh
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Navin Niles
- CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia
| | - Cheok Soon Lee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia .,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia.,Central Clinical School, University of Sydney, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
29
|
Patel RR, Verma V, Barsoumian HB, Ning MS, Chun SG, Tang C, Chang JY, Lee PP, Gandhi S, Balter P, Dunn JD, Chen D, Puebla-Osorio N, Cortez MA, Welsh JW. Use of Multi-Site Radiation Therapy for Systemic Disease Control. Int J Radiat Oncol Biol Phys 2021; 109:352-364. [PMID: 32798606 PMCID: PMC10644952 DOI: 10.1016/j.ijrobp.2020.08.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Metastatic cancer is a heterogeneous entity, some of which could benefit from local consolidative radiation therapy (RT). Although randomized evidence is growing in support of using RT for oligometastatic disease, a highly active area of investigation relates to whether RT could benefit patients with polymetastatic disease. This article highlights the preclinical and clinical rationale for using RT for polymetastatic disease, proposes an exploratory framework for selecting patients best suited for these types of treatments, and briefly reviews potential challenges. The goal of this hypothesis-generating review is to address personalized multimodality systemic treatment for patients with metastatic cancer. The rationale for using high-dose RT is primarily for local control and immune activation in either oligometastatic or polymetastatic disease. However, the primary application of low-dose RT is to activate distinct antitumor immune pathways and modulate the tumor stroma in efforts to better facilitate T cell infiltration. We explore clinical cases involving high- and low-dose RT to demonstrate the potential efficacy of such treatment. We then group patients by extent of disease burden to implement high- and/or low-dose RT. Patients with low-volume disease may receive high-dose RT to all sites as part of an oligometastatic paradigm. Subjects with high-volume disease (for whom standard of care remains palliative RT only) could be treated with a combination of high-dose RT to a few sites for immune activation, while receiving low-dose RT to several remaining lesions to enhance systemic responses from high-dose RT and immunotherapy. We further discuss how emerging but speculative concepts such as immune function may be integrated into this approach and examine therapies currently under investigation that may help address immune deficiencies. The review concludes by addressing challenges in using RT for polymetastatic disease, such as concerns about treatment planning workflows, treatment times, dose constraints for multiple-isocenter treatments, and economic considerations.
Collapse
Affiliation(s)
- Roshal R Patel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Albany Medical College, Albany, New York
| | - Vivek Verma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew S Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Chun
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Percy P Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Dan Dunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dawei Chen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Chen H, Sun Y, Yang Z, Yin S, Li Y, Tang M, Zhu J, Zhang F. Metabolic heterogeneity and immunocompetence of infiltrating immune cells in the breast cancer microenvironment (Review). Oncol Rep 2021; 45:846-856. [PMID: 33650671 PMCID: PMC7859921 DOI: 10.3892/or.2021.7946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women and is characterized by active immunogenicity. Immune cell infiltration plays an important role in the development of breast cancer. The degree of infiltration influences both the response to and effect of treatment. However, immune infiltration is a complex process. Differences in oxygen partial pressure, blood perfusion and nutrients in the tumor microenvironment (TME) suggest that infiltrating immune cells in different sites experience different microenvironments with corresponding changes in the metabolic mode, that is, immune cell metabolism is heterogenous in the TME. Furthermore, the present review found that lipid metabolism can support the immunosuppressive microenvironment in breast cancer based on a review of published literature. Research in this field is still ongoing; however, it is vital to understand the metabolic patterns and effects of different microenvironments for antitumor therapy. Therefore, this review discusses the metabolic responses of various immune cells to different microenvironments in breast cancer and provides potentially meaningful insights for tumor immunotherapy.
Collapse
Affiliation(s)
- Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yizeng Sun
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Yao Li
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Mi Tang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Junping Zhu
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, P.R. China
| |
Collapse
|
31
|
TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13030401. [PMID: 33499083 PMCID: PMC7865468 DOI: 10.3390/cancers13030401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Overcoming tumor immunosuppression still represents one ambitious achievement for cancer immunotherapy. Of note, the cytokine TGF-β contributes to immune evasion in multiple cancer types, by feeding the establishment of a tolerogenic environment in the host. Indeed, it fosters the expansion and accumulation of immunosuppressive regulatory cell populations within the tumor microenvironment (TME), where it also activates resident stromal cells and enhances angiogenesis programs. More recently, TGF-β has also turned out as a key metabolic adjuster in tumors orchestrating metabolic pathways in the TME. In this review, we will scrutinize TGF-β-mediated immune and stromal cell crosstalk within the TME, with a primary focus on metabolic programs.
Collapse
|
32
|
Zhou S, Shang Q, Wang N, Li Q, Song A, Luan Y. Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone. J Control Release 2020; 328:617-630. [DOI: 10.1016/j.jconrel.2020.09.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
|
33
|
Iranparast S, Tayebi S, Ahmadpour F, Yousefi B. Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Curr Cancer Drug Targets 2020; 20:741-756. [PMID: 32691710 DOI: 10.2174/1568009620666200720010647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Several subtypes of T cells are located in a tumor environment, each of which supplies their energy using different metabolic mechanisms. Since the cancer cells require high levels of glucose, the conditions of food poverty in the tumor environment can cause inactivation of immune cells, especially the T-effector cells, due to the need for glucose in the early stages of these cells activity. Different signaling pathways, such as PI3K-AKt-mTOR, MAPK, HIF-1α, etc., are activated or inactivated by the amount and type of energy source or oxygen levels that determine the fate of T cells in a cancerous environment. This review describes the metabolites in the tumor environment and their effects on the function of T cells. It also explains the signaling pathway of T cells in the tumor and normal conditions, due to the level of access to available metabolites and subtypes of T cells in the tumor environment.
Collapse
Affiliation(s)
- Sara Iranparast
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sanaz Tayebi
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Wan M, Zhuang B, Dai X, Zhang L, Zhao F, You Y. A new metabolic signature contributes to disease progression and predicts worse survival in melanoma. Bioengineered 2020; 11:1099-1111. [PMID: 33084485 PMCID: PMC8291831 DOI: 10.1080/21655979.2020.1822714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is a common hallmark of tumor cells and is a crucial mediator of resistance toward anticancer therapies. The pattern of a metabolism-related signature in melanoma remains unknown. Here, we explored the role of a multi-metabolism-related gene signature in melanoma.We used the training and validation sets to develop a multi-metabolism-related gene signature. Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) method were used for constructing a model. The predictive role of the metabolic signature with clinicopathological features of melanoma was also analyzed. Functional analysis of this metabolic signature was also investigated.A ten metabolism-related gene signature was identified and can stratify melanoma into high- and low- risk groups. The signature was correlated with progressive T stage, Breslow thickness, Clark level, and worse survival (all Ps< 0.01). This metabolic signature was shown as an independent prognostic factor and was also a predictive indicator for worse survival in various clinical and molecular features of melanoma. Furthermore, the metabolic signature was implicated in immune responses such as the regulation of T cell activation and cytokine activity. The metabolic signaturewas associated with the progression and worse survival of melanoma. Our study offered a valuable metabolism-targeted therapy approach for melanoma.
Collapse
Affiliation(s)
- Mengdi Wan
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Binyu Zhuang
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Xiao Dai
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Liang Zhang
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Fangqing Zhao
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Yan You
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| |
Collapse
|
35
|
Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:201-222. [PMID: 33034034 DOI: 10.1007/978-3-030-55031-8_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Notch is a key evolutionary conserved pathway, which has fascinated and engaged the work of investigators in an uncountable number of biological fields, from development of metazoans to immunotherapy for cancer. The study of Notch has greatly contributed to the understanding of cancer biology and a substantial effort has been spent in designing Notch-targeting therapies. Due to its broad involvement in cancer, targeting Notch would allow to virtually modulate any aspect of the disease. However, this means that Notch-based therapies must be highly specific to avoid off-target effects. This review will present the newest mechanistic and therapeutic advances in the Notch field and discuss the promises and challenges of this constantly evolving field.
Collapse
|
36
|
Abravan A, Faivre-Finn C, Kennedy J, McWilliam A, van Herk M. Radiotherapy-Related Lymphopenia Affects Overall Survival in Patients With Lung Cancer. J Thorac Oncol 2020; 15:1624-1635. [PMID: 32553694 DOI: 10.1016/j.jtho.2020.06.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lymphopenia after radiotherapy has an adverse effect on the patient's outcome. However, the relationship between radiotherapy dose delivery and lymphopenia is not fully understood. This work used image-based data mining to identify anatomical regions where the received dose is correlated with severe lymphopenia. METHODS A total of 901 patients with lung cancer were analyzed. A Cox model was used to assess prognostic factors of overall survival (OS). Two matched groups were defined-patients with lymphopenia of grade 3 or higher and patients without lymphopenia of grade 3-based on tumor volume, baseline lymphocytes, and prescribed dose. Then, data mining was used to identify regions where dose correlates significantly with lymphopenia of grade 3 or higher. For this, dose matrices were aligned using registration of the computed tomography images to one reference patient. Mean dose distributions were obtained for the two groups, and organs of significance were detected. Dosimetric parameters from the identified organs that had the highest correlation with lymphocytes at nadir were selected. Multivariable analysis was conducted for lymphopenia of grade 3 or higher on the full lung cohort, and the model was tested on 305 patients with esophageal cancer. RESULTS Adjusted Cox regression revealed that lymphopenia of grade 3 or higher is an independent factor of OS. The anatomical regions identified were the heart, lung, and thoracic vertebrae. Dosimetric parameters for lymphopenia included thoracic vertebrae V20, mean lung dose, and mean heart dose, which were further validated in the esophageal cancer cohort. CONCLUSIONS We report that severe lymphopenia during radiotherapy is a poor prognostic factor for OS in patients with lung cancer and could be mitigated by minimizing thoracic vertebrae V20, mean lung dose, and mean heart dose to limit the irradiation of stem cells and blood pool.
Collapse
Affiliation(s)
- Azadeh Abravan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jason Kennedy
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
37
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Bhattacharya S, Calar K, de la Puente P. Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res 2020; 39:75. [PMID: 32357910 PMCID: PMC7195738 DOI: 10.1186/s13046-020-01583-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The heterogeneous tumor microenvironment (TME) is highly complex and not entirely understood. These complex configurations lead to the generation of oxygen-deprived conditions within the tumor niche, which modulate several intrinsic TME elements to promote immunosuppressive outcomes. Decoding these communications is necessary for designing effective therapeutic strategies that can effectively reduce tumor-associated chemotherapy resistance by employing the inherent potential of the immune system.While classic two-dimensional in vitro research models reveal critical hypoxia-driven biochemical cues, three-dimensional (3D) cell culture models more accurately replicate the TME-immune manifestations. In this study, we review various 3D cell culture models currently being utilized to foster an oxygen-deprived TME, those that assess the dynamics associated with TME-immune cell penetrability within the tumor-like spatial structure, and discuss state of the art 3D systems that attempt recreating hypoxia-driven TME-immune outcomes. We also highlight the importance of integrating various hallmarks, which collectively might influence the functionality of these 3D models.This review strives to supplement perspectives to the quickly-evolving discipline that endeavors to mimic tumor hypoxia and tumor-immune interactions using 3D in vitro models.
Collapse
Affiliation(s)
- Somshuvra Bhattacharya
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA
| | - Kristin Calar
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 E 60th Street N, Sioux Falls, SD, 57104, USA.
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA.
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
39
|
Hayes P, Fergus C, Ghanim M, Cirzi C, Burtnyak L, McGrenaghan CJ, Tuorto F, Nolan DP, Kelly VP. Queuine Micronutrient Deficiency Promotes Warburg Metabolism and Reversal of the Mitochondrial ATP Synthase in Hela Cells. Nutrients 2020; 12:nu12030871. [PMID: 32213952 PMCID: PMC7146442 DOI: 10.3390/nu12030871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 01/01/2023] Open
Abstract
Queuine is a eukaryotic micronutrient, derived exclusively from eubacteria. It is incorporated into both cytosolic and mitochondrial transfer RNA to generate a queuosine nucleotide at position 34 of the anticodon loop. The transfer RNA of primary tumors has been shown to be hypomodified with respect to queuosine, with decreased levels correlating with disease progression and poor patient survival. Here, we assess the impact of queuine deficiency on mitochondrial bioenergetics and substrate metabolism in HeLa cells. Queuine depletion is shown to promote a Warburg type metabolism, characterized by increased aerobic glycolysis and glutaminolysis, concomitant with increased ammonia and lactate production and elevated levels of lactate dehydrogenase activity but in the absence of significant changes to proliferation. In intact cells, queuine deficiency caused an increased rate of mitochondrial proton leak and a decreased rate of ATP synthesis, correlating with an observed reduction in cellular ATP levels. Data from permeabilized cells demonstrated that the activity of individual complexes of the mitochondrial electron transport chain were not affected by the micronutrient. Notably, in queuine free cells that had been adapted to grow in galactose medium, the re-introduction of glucose permitted the mitochondrial F1FO-ATP synthase to operate in the reverse direction, acting to hyperpolarize the mitochondrial membrane potential; a commonly observed but poorly understood cancer trait. Together, our data suggest that queuosine hypomodification is a deliberate and advantageous adaptation of cancer cells to facilitate the metabolic switch between oxidative phosphorylation and aerobic glycolysis.
Collapse
Affiliation(s)
- Patti Hayes
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Magda Ghanim
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Cansu Cirzi
- Division of Epigenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (C.C.); (F.T.)
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lyubomyr Burtnyak
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Callum J. McGrenaghan
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Francesca Tuorto
- Division of Epigenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (C.C.); (F.T.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty, Heidelberg University, 68167 Mannheim, Germany
| | - Derek P. Nolan
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Vincent P. Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
- Correspondence: ; Tel.: +353-1-8963507
| |
Collapse
|
40
|
Abravan A, Eide HA, Helland Å, Malinen E. Radiotherapy-related lymphopenia in patients with advanced non-small cell lung cancer receiving palliative radiotherapy. Clin Transl Radiat Oncol 2020; 22:15-21. [PMID: 32181373 PMCID: PMC7063172 DOI: 10.1016/j.ctro.2020.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Risk of grade 3 lymphopenia increased with RT dose to the soft tissue and trabecular bone. High baseline CRP/Albumin was negatively associated with overall survival. Risk of lymphopenia may decrease by limiting irradiation field in palliative RT.
Background Lymphopenia during radiotherapy (RT) may have an adverse effect on treatment outcome. The aim of this study is to investigate associations between lymphopenia and RT parameters in patients with advanced lung cancer. Moreover, to investigate the prognostic role of lymphopenia, blood protein levels, and treatment and patient-related factors. Material and Methods Sixty-two advanced stage non-small cell lung cancer (NSCLC) patients were retrospectively analyzed. Blood counts were available prior to, during, and after RT (3Gyx10). For each patient, a thoracic volume of interest (VOI) –including thoracic soft tissue and trabecular bone– was obtained by applying a CT window of −500 to 1200 HU in the planning CT. Dose parameters from thoracic VOI and other regions including lungs and vertebrae were calculated. Association between risk of lymphopenia ≥ G3 (lymphocytes at nadir according to CTCAE v4.0) and therapeutic parameters was investigated using Logistic regression. Relationships between overall survival (OS) and RT dose parameters, baseline blood counts and protein levels, and clinical factors were evaluated using Log-rank and Cox models. Result Mean thoracic RT dose (odds ratio [OR] 1.67; p = 0.04), baseline lymphocytes (OR 0.65; p = 0.01), and corticosteroids use (OR 6.07; p = 0.02) were significantly associated with increased risk of lymphopenia ≥ G3 in multivariable analysis. Worse OS was associated with high mean thoracic RT dose, high CRP/Albumin, large tumor volume and corticosteroids use (p < 0.05, univariate analysis), but not with lymphopenia ≥ G3. CRP/Albumin ratio > 0.12 (hazard ratio [HR] 2.28, p = 0.03) and corticosteroid use (HR 2.52, p = 0.01) were independently associated with worse OS. Conclusion High thoracic RT dose gave a higher risk of lymphopenia ≥ G3; hence limiting dose volume to the thorax may be valuable in preventing severe lymphopenia for patients receiving palliative fractionated RT. Still, lymphopenia ≥ G3 was not associated with worse OS. however, high baseline CRP/Albumin was associated with poorer OS and may carry important information as a prognostic factor of OS in advanced NSCLC receiving palliative RT.
Collapse
Key Words
- C-reactive protein/Albumin
- CRP, C-Reactive Protein
- CRT, Chemo-radiotherapy
- CT, Computed Tomography
- CTCAE, Common Terminology Criteria for Adverse Events
- Corticosteroid
- ECOG, Eastern Cooperative Oncology Group
- GTV, Gross Tumor Volume
- HR, Hazard Ratio
- Hematologic toxicity
- Lung cancer
- Lymphopenia
- NSCLC, Non-Small Cell Lung Cancer
- OR, Odds Ratio
- OS, Overall Survival
- Overall survival
- RT, Radiotherapy
- Radiotherapy
- VOI, Volume of Interest
Collapse
Affiliation(s)
- Azadeh Abravan
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
- Corresponding author at: Department of Medical Physics, Oslo University Hospital, PO Box 4953 Nydalen, N-0424 Oslo, Norway.
| | - Hanne Astrid Eide
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Xiong TF, Pan FQ, Liang Q, Luo R, Li D, Mo H, Zhou X. Prognostic value of the expression of chemokines and their receptors in regional lymph nodes of melanoma patients. J Cell Mol Med 2020; 24:3407-3418. [PMID: 31983065 PMCID: PMC7131952 DOI: 10.1111/jcmm.15015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 12/17/2022] Open
Abstract
Chemokines and their receptors have been reported to drive immune cells into tumours or to be directly involved in the promotion or inhibition of the development of tumours. However, their expression in regional lymph node (LN) tissues in melanoma patients remains unknown. The present study investigated the relationship between the expression of mRNA of chemokines and their receptors and clinicopathology of the regional LN tissues of skin cutaneous melanoma (SKCM) patients available in The Cancer Genome Atlas. The relationship between chemokines and their receptors and the composition of immune cells within the tumour was analysed. In SKCM regional LN tissues, the high expression of 32 types of chemokines and receptors, namely CCL2, 4‐5, 7‐8, 13, 22‐25, CCR1‐9, CXCL9‐13, 16, CXCR3, 5, 6, XCL1‐2 and XCR1 in LN was associated with favourable patient prognosis. Conversely, high expression of CXCL17 was an indicator of poor prognosis. The expression of mRNA for CXCL9‐11, 13, CXCR3, 6, CCL2, 4, 5, 7, 8, 25, CCR1, 2, 5, and XCL1, 2 in regional LN tissues was positively correlated with the fraction of CD8‐positive T cells and M1 macrophages, and was negatively correlated with M0 macrophages. CCR4, 6‐9, CCL13, 22, 23 and XCR1 were positively correlated with the fraction of memory B cells and naive T cells, and negatively correlated with M0 macrophages and resting mast cells, suggesting that chemokines and their receptors may affect the prognosis of patients by guiding immune cells into the tumour microenvironment to eliminate tumour cells.
Collapse
Affiliation(s)
- Ting-Feng Xiong
- Department of Medical Treatment Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fu-Qiang Pan
- Department of Medical Treatment Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Liang
- Department of Medical Treatment Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruijin Luo
- Medical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong Li
- Department of Medical Treatment Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haiyan Mo
- Department of Medical Treatment Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Zhou
- Department of Medical Treatment Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
42
|
Leong L, Tan HL, Cua S, Yong KSM, Chen Q, Choo A. Preclinical Activity of Embryonic Annexin A2-Specific Chimeric Antigen Receptor T Cells Against Ovarian Cancer. Int J Mol Sci 2020; 21:ijms21020381. [PMID: 31936170 PMCID: PMC7013580 DOI: 10.3390/ijms21020381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptors (CARs) have found clinical success in B cell malignancies, but a dearth of potential targets limits their wider clinical application, especially in solid tumours. Here, we describe the development of an anti-annexin A2 CAR, CAR(2448), derived from an antibody found to have activity against epithelial ovarian cancer cell lines. The spacer length of CAR(2448) was optimised based on in vitro cytotoxic activity against ovarian cancer (OC) cell lines via a real-time cytotoxicity assay. The longer spacer CAR(2448)L T cells exhibit significant effector activity, inducing inflammatory cytokine release and cytotoxicity against OC cell lines. Furthermore, CAR(2448)L-BBz T cells induced enhanced survival in an in vivo OC xenograft model and reduced tumour volume by 76.6%. Our preclinical studies of CAR(2448) suggest its potential for the unmet need of novel strategies for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Leonard Leong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore
- NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| | - Heng Liang Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore
| | - Simeon Cua
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Andre Choo
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore 138668, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore (NUS), Singapore 117575, Singapore
- Correspondence:
| |
Collapse
|
43
|
Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, Pinkerton AB, Eton E, Medhi R, Chandrasekar V, Rahman MM, Ichimura T, Gopinath KS, Majumder P, Kohandel M, Sengupta S. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal 2019; 12:12/595/eaas8779. [PMID: 31431543 DOI: 10.1126/scisignal.aas8779] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastable phenotypic state transitions in cancer cells can lead to the development of transient adaptive resistance or tolerance to chemotherapy. Here, we report that the acquisition of a phenotype marked by increased abundance of CD44 (CD44Hi) by breast cancer cells as a tolerance response to routinely used cytotoxic drugs, such as taxanes, activated a metabolic switch that conferred tolerance against unrelated standard-of-care chemotherapeutic agents, such as anthracyclines. We characterized the sequence of molecular events that connected the induced CD44Hi phenotype to increased activity of both the glycolytic and oxidative pathways and glucose flux through the pentose phosphate pathway (PPP). When given in a specific order, a combination of taxanes, anthracyclines, and inhibitors of glucose-6-phosphate dehydrogenase (G6PD), an enzyme involved in glucose metabolism, improved survival in mouse models of breast cancer. The same sequence of the three-drug combination reduced the viability of patient breast tumor samples in an explant system. Our findings highlight a convergence between phenotypic and metabolic state transitions that confers a survival advantage to cancer cells against clinically used drug combinations. Pharmacologically targeting this convergence could overcome cross-drug tolerance and could emerge as a new paradigm in the treatment of cancer.
Collapse
Affiliation(s)
- Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA
| | - Sachin Khiste
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Andrew Dhawan
- School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Biswanath Majumder
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA.,Mitra Biotech, 7, Service Road, Pragathi Nagar, Electronic City, Bengaluru, Karnataka 560100, India
| | - Jayanta Mondal
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Elliot Eton
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ragini Medhi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vineethkrishna Chandrasekar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - M Mamunur Rahman
- Medical and Biological Laboratories International, Woburn, MA 01801, USA
| | - Takaharu Ichimura
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kodaganur S Gopinath
- Department of Surgical Oncology, HCG Bangalore Institute of Oncology Specialty Center, Bengaluru, Karnataka 560027, India
| | - Pradip Majumder
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,Dana Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
44
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
45
|
Marco-Brualla J, Al-Wasaby S, Soler R, Romanos E, Conde B, Justo-Méndez R, Enríquez JA, Fernández-Silva P, Martínez-Lostao L, Villalba M, Moreno-Loshuertos R, Anel A. Mutations in the ND2 Subunit of Mitochondrial Complex I Are Sufficient to Confer Increased Tumorigenic and Metastatic Potential to Cancer Cells. Cancers (Basel) 2019; 11:E1027. [PMID: 31330915 PMCID: PMC6678765 DOI: 10.3390/cancers11071027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
Multiprotein complexes of the mitochondrial electron transport chain form associations to generate supercomplexes. The relationship between tumor cell ability to assemble mitochondrial supercomplexes, tumorigenesis and metastasis has not been studied thoroughly. The mitochondrial and metabolic differences between L929dt cells, which lost matrix attachment and MHC-I expression, and their parental cell line L929, were analyzed. L929dt cells have lower capacity to generate energy through OXPHOS and lower respiratory capacity than parental L929 cells. Most importantly, L929dt cells show defects in mitochondrial supercomplex assembly, especially in those that contain complex I. These defects correlate with mtDNA mutations in L929dt cells at the ND2 subunit of complex I and are accompanied by a glycolytic shift. In addition, L929dt cells show higher in vivo tumorigenic and metastatic potential than the parental cell line. Cybrids with L929dt mitochondria in L929 nuclear background reproduce all L929dt properties, demonstrating that mitochondrial mutations are responsible for the aggressive tumor phenotype. In spite of their higher tumorigenic potential, L929dt or mitochondrial L929dt cybrid cells are sensitive both in vitro and in vivo to the PDK1 inhibitor dichloroacetate, which favors OXPHOS, suggesting benefits for the use of metabolic inhibitors in the treatment of especially aggressive tumors.
Collapse
Affiliation(s)
- Joaquín Marco-Brualla
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Sameer Al-Wasaby
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Ruth Soler
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Eduardo Romanos
- Aragón Health Research Institute (IIS Aragón), Center for Research in Biomedicine, E-50009 Zaragoza, Spain
| | - Blanca Conde
- Department of Human Anatomy and Histology, Faculty of Medicine, Campus San Francisco Square, University of Zaragoza, E-50009 Zaragoza, Spain
| | | | - José A Enríquez
- Carlos III National Center for Cardiovascular Research, 28029 Madrid, Spain
| | - Patricio Fernández-Silva
- GENOXPHOS Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Biocomputation and Complex Systems Physics Institute (BIFI), University of Zaragoza, E-50009 Zaragoza, Spain
| | | | - Martín Villalba
- The National Institute of Biomedical Research (INSERM), Centre Hospitalier Universitaire de Montpellier, The University of Montpellier, The Institute for Regenerative Medicine and Biotherapy, 34090 Montpellier, France
- IRMB, CHU Montpellier, 34090 Montpellier, France
| | - Raquel Moreno-Loshuertos
- GENOXPHOS Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Biocomputation and Complex Systems Physics Institute (BIFI), University of Zaragoza, E-50009 Zaragoza, Spain.
| | - Alberto Anel
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain.
| |
Collapse
|
46
|
Phase 1 investigation of lenalidomide/rituximab plus outcomes of lenalidomide maintenance in relapsed CNS lymphoma. Blood Adv 2019; 2:1595-1607. [PMID: 29986852 DOI: 10.1182/bloodadvances.2017014845] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/08/2018] [Indexed: 12/29/2022] Open
Abstract
There is an unmet need for effective biological therapies for relapsed central nervous system (CNS) lymphoma. Lenalidomide is active in activated B-cell type diffuse large B-cell lymphoma and rituximab is effective in CNS lymphoma. These observations are the basis for this first trial of an immunomodulatory drug as monotherapy in CNS lymphoma, and, in patients with inadequate responses to lenalidomide, with rituximab. In an independent cohort, we evaluated lenalidomide maintenance after salvage with high-dose methotrexate or focal irradiation in relapsed primary CNS lymphoma (PCNSL). We determined safety, efficacy, and cerebrospinal fluid (CSF) penetration of lenalidomide at 10-, 15-, and 20-mg dose levels in 14 patients with refractory CD20+ CNS lymphoma. Nine subjects with relapsed, refractory CNS lymphoma achieved better than partial response with lenalidomide monotherapy, 6 maintained response ≥9 months, and 4 maintained response ≥18 months. Median progression-free survival for lenalidomide/rituximab was 6 months. In the independent cohort, response duration with lenalidomide maintenance after complete responses 2 through 5 were significantly longer than response durations after standard therapy. The CSF/plasma partition coefficient of lenalidomide was ≥20% at 15- and 20-mg dose levels. Change in CSF interleukin-10 at 1 month correlated with clinical response and response duration to lenalidomide. Metabolomic profiling of CSF identified novel biomarkers, including lactate, and implicated indoleamine-2,3 dioxygenase activity with CNS lymphoma progression on lenalidomide. We conclude that lenalidomide penetrates ventricular CSF and is active as monotherapy in relapsed CNS lymphomas. We provide evidence that maintenance lenalidomide potentiates response duration after salvage in relapsed PCNSL and delays whole brain radiotherapy (WBRT). This trial was registered at www.clinicaltrials.gov as #NCT01542918.
Collapse
|
47
|
Merkley SD, Chock CJ, Yang XO, Harris J, Castillo EF. Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Front Immunol 2018; 9:2914. [PMID: 30619278 PMCID: PMC6302218 DOI: 10.3389/fimmu.2018.02914] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a homeostatic and inducible process affecting multiple aspects of the immune system. This intrinsic cellular process is involved in MHC-antigen (Ag) presentation, inflammatory signaling, cytokine regulation, and cellular metabolism. In the context of T cell responses, autophagy has an influential hand in dictating responses to self and non-self by controlling extrinsic factors (e.g., MHC-Ag, cytokine production) in antigen-presenting cells (APC) and intrinsic factors (e.g., cell signaling, survival, cytokine production, and metabolism) in T cells. These attributes make autophagy an attractive therapeutic target to modulate T cell responses. In this review, we examine the impact autophagy has on T cell responses by modulating multiple aspects of APC function; the importance of autophagy in the activation, differentiation and homeostasis of T cells; and discuss how the modulation of autophagy could influence T cell responses.
Collapse
Affiliation(s)
- Seth D Merkley
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Cameron J Chock
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University Clayton, VIC, Australia
| | - Eliseo F Castillo
- Clinical and Translational Science Center, University of New Mexico Health Sciences Albuquerque, NM, United States.,Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Albuquerque, NM, United States.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine Albuquerque, NM, United States
| |
Collapse
|
48
|
Hu Z, Zou Q, Su B. Regulation of T cell immunity by cellular metabolism. Front Med 2018; 12:463-472. [PMID: 30112717 DOI: 10.1007/s11684-018-0668-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
T cells are an important adaptive immune response arm that mediates cell-mediated immunity. T cell metabolism plays a central role in T cell activation, proliferation, differentiation, and effector function. Specific metabolic programs are tightly controlled to mediate T cell immune responses, and alterations in T cell metabolism may result in many immunological disorders. In this review, we will summarize the main T cell metabolic pathways and the important factors participating in T cell metabolic programming during T cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Zhilin Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
49
|
Wegiel B, Vuerich M, Daneshmandi S, Seth P. Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy. Front Oncol 2018; 8:284. [PMID: 30151352 PMCID: PMC6099109 DOI: 10.3389/fonc.2018.00284] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor-induced immune tolerance permits growth and spread of malignant cells. Cancer cells have strong influence on surrounding cells and shape the hypoxic tumor microenvironment (TME) facilitating cancer progression. A dynamic change in glucose metabolism occurring in cancer cells and its influence on the TME are still poorly understood. Indeed, cancer and/or immune cells undergo rapid adaptation in metabolic pathways during cancer progression. Metabolic reprograming affects macrophages, T cells, and myeloid derived suppressor cells (MDSCs) among other immune cells. Their role in the TME depends on a nature and concentration of factors, such as cytokines, reactive oxygen species (ROS), growth factors, and most importantly, diffusible metabolites (i.e., lactate). Further, the amounts of available nutrients and oxygen as well as activity of microbiota may influence metabolic pathways in the TME. The roles of metabolites in regulating of the interaction between immune and cancer cell are highlighted in this review. Targeting metabolic reprogramming or signaling pathways controlling cell metabolism in the TME might be a potential strategy for anti-cancer therapy alone or in combination with current immunotherapies.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Marta Vuerich
- Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Saeed Daneshmandi
- Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pankaj Seth
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
50
|
Bhaw-Luximon A, Jhurry D. Redox-responsive Drug Delivery Systems. STIMULI-RESPONSIVE DRUG DELIVERY SYSTEMS 2018. [DOI: 10.1039/9781788013536-00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Disbalanced reactive oxygen species (ROS) and glutathione (GSH) are characteristic features of tumor cells. High intracellular GSH concentration in tumor cells is a well-documented fact that leads to a very high reducing intracellular bio-milieu. High accumulation of ROS is known to occur in almost all cancers and can act as a two-edged sword during tumor development, by either promoting or inhibiting growth. These two features present unique opportunities to design drug delivery systems that are responsive to reduction or/and oxidation stimuli and has attracted accrued interest from researchers. These nanocarriers change their structural integrity, either through disassembly or degradation, to deliver their payload in the presence of the trigger. The aim of this chapter is to summarize the key developments in the design of materials with redox-responsive behaviour and their subsequent application in the field of nanomedicine targeting cancer. Strategies into exploiting both stimuli in a single nano drug delivery system to enhance therapeutic efficacy are also addressed.
Collapse
Affiliation(s)
- Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius Réduit Mauritius
| | - Dhanjay Jhurry
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius Réduit Mauritius
| |
Collapse
|