1
|
Peris Sempere V, Luo G, Muñiz-Castrillo S, Pinto AL, Picard G, Rogemond V, Titulaer MJ, Finke C, Leypoldt F, Kuhlenbäumer G, Jones HF, Dale RC, Binks S, Irani SR, Bastiaansen AE, de Vries JM, de Bruijn MAAM, Roelen DL, Kim TJ, Chu K, Lee ST, Kanbayashi T, Pollock NR, Kichula KM, Mumme-Monheit A, Honnorat J, Norman PJ, Mignot E. HLA and KIR genetic association and NK cells in anti-NMDAR encephalitis. Front Immunol 2024; 15:1423149. [PMID: 39050850 PMCID: PMC11266021 DOI: 10.3389/fimmu.2024.1423149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Genetic predisposition to autoimmune encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDAR) is poorly understood. Given the diversity of associated environmental factors (tumors, infections), we hypothesized that human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptors (KIR), two extremely polymorphic gene complexes key to the immune system, might be relevant for the genetic predisposition to anti-NMDAR encephalitis. Notably, KIR are chiefly expressed by Natural Killer (NK) cells, recognize distinct HLA class I allotypes and play a major role in anti-tumor and anti-infection responses. Methods We conducted a Genome Wide Association Study (GWAS) with subsequent control-matching using Principal Component Analysis (PCA) and HLA imputation, in a multi-ethnic cohort of anti-NMDAR encephalitis (n=479); KIR and HLA were further sequenced in a large subsample (n=323). PCA-controlled logistic regression was then conducted for carrier frequencies (HLA and KIR) and copy number variation (KIR). HLA-KIR interaction associations were also modeled. Additionally, single cell sequencing was conducted in peripheral blood mononuclear cells from 16 cases and 16 controls, NK cells were sorted and phenotyped. Results Anti-NMDAR encephalitis showed a weak HLA association with DRB1*01:01~DQA1*01:01~DQB1*05:01 (OR=1.57, 1.51, 1.45; respectively), and DRB1*11:01 (OR=1.60); these effects were stronger in European descendants and in patients without an underlying ovarian teratoma. More interestingly, we found increased copy number variation of KIR2DL5B (OR=1.72), principally due to an overrepresentation of KIR2DL5B*00201. Further, we identified two allele associations in framework genes, KIR2DL4*00103 (25.4% vs. 12.5% in controls, OR=1.98) and KIR3DL3*00302 (5.3% vs. 1.3%, OR=4.44). Notably, the ligands of these KIR2DL4 and KIR3DL3, respectively, HLA-G and HHLA2, are known to act as immune checkpoint with immunosuppressive functions. However, we did not find differences in specific KIR-HLA ligand interactions or HLA-G polymorphisms between cases and controls. Similarly, gene expression of CD56dim or CD56bright NK cells did not differ between cases and controls. Discussion Our observations for the first time suggest that the HLA-KIR axis might be involved in anti-NMDAR encephalitis. While the genetic risk conferred by the identified polymorphisms appears small, a role of this axis in the pathophysiology of this disease appears highly plausible and should be analyzed in future studies.
Collapse
Affiliation(s)
- Vicente Peris Sempere
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Guo Luo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Sergio Muñiz-Castrillo
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Géraldine Picard
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Leypoldt
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein Kiel/Lübeck, Kiel, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, Christian-Albrechts-University/University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Hannah F. Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell C. Dale
- Kids Neuroscience Centre, Children’s Hospital at Westmead clinical school, University of Sydney, Sydney, NSW, Australia
| | - Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Neurology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, United States
| | | | - Juna M. de Vries
- Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Dave L. Roelen
- Department of Immunogenetics and Transplantation Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Abigail Mumme-Monheit
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndrome and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- Institut MeLiS INSERM U1314/CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emmanuel Mignot
- Stanford Center for Sleep Science and Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
2
|
Margolis DJ, Mitra N, Hoffstad OJ, Berna R, Kim BS, Chopra A, Phillips EJ. Association of KIR2DL5, KIR2DS5, and KIR2DS1 allelic variation and atopic dermatitis. Sci Rep 2023; 13:1730. [PMID: 36720995 PMCID: PMC9889380 DOI: 10.1038/s41598-023-28847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Natural killer cells (NK) have been associated with the pathophysiology of atopic dermatitis (AD). NK function is regulated by killer cell Ig-like receptor family (KIR) receptors that interact with HLA ligands. The study goal was to focus on allelic variation in genes KIR2DL5, KIR2DS5, and KIR2DS1 with respect to AD. This was a case-control study of individuals with (n = 313) and without (n = 176) AD. Associations were estimated using logistic regression. The prevalence of KIR2DL5 was 52.5% (95% CI 48.0,57.0), KIR2DS5 was 33.0% (28.8,37.3), and KIR2DS1 was 33.6% (29.4,38.0). The presence of the KIR2DL5*001:01 increased the odds of having AD by about 86% (odds ratio (OR): 1.86(1.23,2.82) p = 0.003). The risk for individuals homozygous for KIR2DL5*001:01 was even greater (OR: 2.16 (95% CI 1.31,3.53) p = 0.0023). The odds of having AD with KIR2DL5*001:01 was similar in Whites and Blacks. Allelic variation in KIR2DS5 and KIR2DS1 was not associated with AD. There is no known HLA binding ligand for KIR2DL5. The effect of KIR2DL5*001:01 increased in the presence of HLA-B*-21TT leader sequence (2.46(1.37,4.41) p = 0.0025) and the HLA-C2 ligand (2.07 (1.37,4.41, p = 0.000002). Our study shows an independent association of the KIR2DL5*001:01 with AD and is the first study to associate AD with KIR allelic variation.
Collapse
Affiliation(s)
- David J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 901 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ole J Hoffstad
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 901 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Ronald Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 901 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Brian S Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia.,Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Ren X, Peng M, Xing P, Wei Y, Galbo PM, Corrigan D, Wang H, Su Y, Dong X, Sun Q, Li Y, Zhang X, Edelmann W, Zheng D, Zang X. Blockade of the immunosuppressive KIR2DL5/PVR pathway elicits potent human NK cell-mediated antitumor immunity. J Clin Invest 2022; 132:e163620. [PMID: 36377656 PMCID: PMC9663162 DOI: 10.1172/jci163620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 09/29/2023] Open
Abstract
Cancer immunotherapy targeting the TIGIT/PVR pathway is currently facing challenges. KIR2DL5, a member of the human killer cell, immunoglobulin-like receptor (KIR) family, has recently been identified as another binding partner for PVR. The biology and therapeutic potential of the KIR2DL5/PVR pathway are largely unknown. Here we report that KIR2DL5 was predominantly expressed on human NK cells with mature phenotype and cytolytic function and that it bound to PVR without competition with the other 3 known PVR receptors. The interaction between KIR2DL5 on NK cells and PVR on target cells induced inhibitory synapse formation, whereas new monoclonal antibodies blocking the KIR2DL5-PVR interaction robustly augmented the NK cytotoxicity against PVR+ human tumors. Mechanistically, both intracellular ITIM and ITSM of KIR2DL5 underwent tyrosine phosphorylation after engagement, which was essential for KIR2DL5-mediated NK suppression by recruiting SHP-1 and/or SHP-2. Subsequently, ITIM/SHP-1/SHP-2 and ITSM/SHP-1 downregulated the downstream Vav1/ERK1/2/p90RSK/NF-κB signaling. KIR2DL5+ immune cells infiltrated in various types of PVR+ human cancers. Markedly, the KIR2DL5 blockade reduced tumor growth and improved overall survival across multiple NK cell-based humanized tumor models. Thus, our results revealed functional mechanisms of KIR2DL5-mediated NK cell immune evasion, demonstrated blockade of the KIR2DL5/PVR axis as a therapy for human cancers, and provided an underlying mechanism for the clinical failure of anti-TIGIT therapies.
Collapse
Affiliation(s)
- Xiaoxin Ren
- Department of Microbiology and Immunology and
| | - Mou Peng
- Department of Microbiology and Immunology and
| | - Peng Xing
- Department of Microbiology and Immunology and
| | - Yao Wei
- Department of Microbiology and Immunology and
| | - Phillip M. Galbo
- Department of Microbiology and Immunology and
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Hao Wang
- Department of Microbiology and Immunology and
| | - Yingzhen Su
- Department of Microbiology and Immunology and
| | | | - Qizhe Sun
- Department of Microbiology and Immunology and
| | - Yixian Li
- Department of Microbiology and Immunology and
- Division of Pediatric Hematology/Oncology/Transplant and Cellular Therapy, Children’s Hospital at Montefiore, Bronx, New York, USA
| | | | | | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Departments of Neurology and Neuroscience
| | - Xingxing Zang
- Department of Microbiology and Immunology and
- Department of Oncology
- Department of Medicine, and
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Holder KA, Grant MD. TIGIT Blockade: A Multipronged Approach to Target the HIV Reservoir. Front Cell Infect Microbiol 2020; 10:175. [PMID: 32432050 PMCID: PMC7214612 DOI: 10.3389/fcimb.2020.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
During chronic human immunodeficiency virus type 1 (HIV-1) infection, upregulation of inhibitory molecules contributes to effector cell dysfunction and exhaustion. This, in combination with the ability of HIV-1 to reside dormant in cellular reservoirs and escape immune recognition, makes the pathway to HIV-1 cure particularly challenging. An idealized strategy to achieve HIV-1 cure proposes combined viral and immune activation by "shock"ing HIV-1 out of latency and into an immunologically visible state to be recognized and "kill"ed by immune effector cells. Here we outline the potential for blockade of the inhibitory immune checkpoint T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) to overcome natural killer (NK) cell and T cell inhibition associated with HIV-1 infection and invigorate antiviral effector cell responses against HIV-1 reactivated from the latent cellular reservoir.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
5
|
Cisneros E, Moraru M, Gómez-Lozano N, Muntasell A, López-Botet M, Vilches C. Haplotype-Based Analysis of KIR-Gene Profiles in a South European Population-Distribution of Standard and Variant Haplotypes, and Identification of Novel Recombinant Structures. Front Immunol 2020; 11:440. [PMID: 32256494 PMCID: PMC7089957 DOI: 10.3389/fimmu.2020.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibitory Killer-cell Immunoglobulin-like Receptors (KIR) specific for HLA class I molecules enable human natural killer cells to monitor altered antigen presentation in pathogen-infected and tumor cells. KIR genes display extensive copy-number variation and allelic polymorphism. They organize in a series of variable arrangements, designated KIR haplotypes, which derive from duplications of ancestral genes and sequence diversification through point mutation and unequal crossing-over events. Genomic studies have established the organization of multiple KIR haplotypes—many of them are fixed in most human populations, whereas variants of those have less certain distributions. Whilst KIR-gene diversity of many populations and ethnicities has been explored superficially (frequencies of individual genes and presence/absence profiles), less abundant are in-depth analyses of how such diversity emerges from KIR-haplotype structures. We characterize here the genetic diversity of KIR in a sample of 414 Spanish individuals. Using a parsimonious approach, we manage to explain all 38 observed KIR-gene profiles by homo- or heterozygous combinations of six fixed centromeric and telomeric motifs; of six variant gene arrangements characterized previously by us and others; and of two novel haplotypes never detected before in Caucasoids. Associated to the latter haplotypes, we also identified the novel transcribed KIR2DL5B*0020202 allele, and a chimeric KIR2DS2/KIR2DL3 gene (designated KIR2DL3*033) that challenges current criteria for classification and nomenclature of KIR genes and haplotypes.
Collapse
Affiliation(s)
- Elisa Cisneros
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Manuela Moraru
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Natalia Gómez-Lozano
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| |
Collapse
|
6
|
Guillamón CF, Gimeno L, Server G, Martínez-Sánchez MV, Escudero JF, López-Cubillana P, Cabezas-Herrera J, Campillo JA, Abellan DJ, Martínez-García J, Martínez-Escribano J, Ferri B, López-Álvarez MR, Moreno-Alarcón C, Moya-Quiles MR, Muro M, Minguela A. Immunological Risk Stratification of Bladder Cancer Based on Peripheral Blood Natural Killer Cell Biomarkers. Eur Urol Oncol 2019; 4:246-255. [PMID: 31411976 DOI: 10.1016/j.euo.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bladder cancer (BC) is highly immunogenic. Bacillus Calmette-Guérin (BCG) immunotherapy offers the best results in non-muscle-invasive BC (NMIBC). Natural killer cells (NKcs) play decisive roles in BCG-mediated immune response and in general cancer immune-surveillance. OBJECTIVE To analyze killer-cell immunoglobulin-like receptors (KIRs), their human leukocyte antigen class-I (HLA-I) ligands, and the expression of DNAX Accessory Molecule-1 (DNAM-1/CD226) on peripheral blood (PB) NKcs, to identify useful predictive biomarkers in BC. DESIGN, SETTING, AND PARTICIPANTS KIR/HLA-ligand genotypes were compared between 132 BC, 201 other solid cancers, 164 plasma cell disorders, and 615 healthy Caucasoid controls. CD226 expression was evaluated by flow cytometry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS KIR/HLA-I interactions and CD226 expression on NKcs (CD226high or CD226low) were compared across study groups, cancer stages, treatments, and progression-free and overall survival of patients, using chi-square, analysis of variance/post hoc, Kaplan-Meier/log-rank, and regression analyses. RESULTS AND LIMITATIONS Three immunological risk groups were identified: low risk (KIR2DL1-L2+L3-/C1C1- and KIR2DL1+L2+L3+/C1C1+), intermediate risk (rest), and high risk (KIR2DL5+/HLA-C*16+ and KIR2DL1+L2+L3-), which displayed different 10-yr progression-free rates (83.3%, 48.6%, and 0%, respectively; p<0.001) and survival rates (83.3%, 54.3%, and 6.2%, respectively; p<0.001) for muscle-invasive T2/T4, and 10-yr progression-free rates (100%, 81.6%, and 50%, respectively; p<0.05) for NMIBC-T1 treated with BCG. Immunological risk stratification had an independent prognostic value to just histological staging for survival (hazard ratio=2.93, p<0.00001, Harrell C-statistic=0.779). CD226 expression on PB NKcs improved immunological stratification in intermediate-risk T1-T4 BC patients, with survival rates of 94.1% and 66.7% for CD226high and CD226low (p<0.05), respectively. CONCLUSIONS Immunological risk stratification will complement BC histopathology to improve risk stratification and guide the selection of personalized treatments. Understanding of the molecular mechanisms of NKc tumor immune surveillance will enable the development of future NKc-based therapies. PATIENT SUMMARY This work describes a peripheral blood test that aids in our understanding of the immune defense mechanisms against bladder cancer, is useful for classifying patient risk, and will guide personalized treatments.
Collapse
Affiliation(s)
- Concepción F Guillamón
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Lourdes Gimeno
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | - María V Martínez-Sánchez
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | | | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, HCUVA-IMIB, Murcia, Spain
| | - José A Campillo
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Daniel J Abellan
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | | | | | - Belén Ferri
- Pathology Services, HCUVA-IMIB, Murcia, Spain
| | - María R López-Álvarez
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | | | - María R Moya-Quiles
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Manuel Muro
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.
| |
Collapse
|
7
|
Nemat-Gorgani N, Hilton HG, Henn BM, Lin M, Gignoux CR, Myrick JW, Werely CJ, Granka JM, Möller M, Hoal EG, Yawata M, Yawata N, Boelen L, Asquith B, Parham P, Norman PJ. Different Selected Mechanisms Attenuated the Inhibitory Interaction of KIR2DL1 with C2 + HLA-C in Two Indigenous Human Populations in Southern Africa. THE JOURNAL OF IMMUNOLOGY 2018; 200:2640-2655. [PMID: 29549179 DOI: 10.4049/jimmunol.1701780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
The functions of human NK cells in defense against pathogens and placental development during reproduction are modulated by interactions of killer cell Ig-like receptors (KIRs) with HLA-A, -B and -C class I ligands. Both receptors and ligands are highly polymorphic and exhibit extensive differences between human populations. Indigenous to southern Africa are the KhoeSan, the most ancient group of modern human populations, who have highest genomic diversity worldwide. We studied two KhoeSan populations, the Nama pastoralists and the ≠Khomani San hunter-gatherers. Comprehensive next-generation sequence analysis of HLA-A, -B, and -C and all KIR genes identified 248 different KIR and 137 HLA class I, which assort into ∼200 haplotypes for each gene family. All 74 Nama and 78 ≠Khomani San studied have different genotypes. Numerous novel KIR alleles were identified, including three arising by intergenic recombination. On average, KhoeSan individuals have seven to eight pairs of interacting KIR and HLA class I ligands, the highest diversity and divergence of polymorphic NK cell receptors and ligands observed to date. In this context of high genetic diversity, both the Nama and the ≠Khomani San have an unusually conserved, centromeric KIR haplotype that has arisen to high frequency and is different in the two KhoeSan populations. Distinguishing these haplotypes are independent mutations in KIR2DL1, which both prevent KIR2DL1 from functioning as an inhibitory receptor for C2+ HLA-C. The relatively high frequency of C2+ HLA-C in the Nama and the ≠Khomani San appears to have led to natural selection against strong inhibitory C2-specific KIR.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Hugo G Hilton
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794
| | - Meng Lin
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado, Denver, CO 80045.,Department of Biostatistics, University of Colorado, Denver, CO 80045
| | - Justin W Myrick
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794
| | - Cedric J Werely
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Julie M Granka
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Marlo Möller
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Eileen G Hoal
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Makoto Yawata
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, National University of Singapore, Singapore 119077, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Nobuyo Yawata
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Section of Ophthalmology, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan; and
| | - Lies Boelen
- Section of Immunology, Imperial College London, London SW7 2BX, United Kingdom
| | - Becca Asquith
- Section of Immunology, Imperial College London, London SW7 2BX, United Kingdom
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|