1
|
Montauti E, Weinberg SE, Chu P, Chaudhuri S, Mani NL, Iyer R, Zhou Y, Zhang Y, Liu C, Xin C, Gregory S, Wei J, Zhang Y, Chen W, Sun Z, Yan M, Fang D. A deubiquitination module essential for T reg fitness in the tumor microenvironment. SCIENCE ADVANCES 2022; 8:eabo4116. [PMID: 36427305 PMCID: PMC9699683 DOI: 10.1126/sciadv.abo4116] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tumor microenvironment (TME) enhances regulatory T (Treg) cell stability and immunosuppressive functions through up-regulation of lineage transcription factor Foxp3, a phenomenon known as Treg fitness or adaptation. Here, we characterize previously unknown TME-specific cellular and molecular mechanisms underlying Treg fitness. We demonstrate that TME-specific stressors including transforming growth factor-β (TGF-β), hypoxia, and nutrient deprivation selectively induce two Foxp3-specific deubiquitinases, ubiquitin-specific peptidase 22 (Usp22) and Usp21, by regulating TGF-β, HIF, and mTOR signaling, respectively, to maintain Treg fitness. Simultaneous deletion of both USPs in Treg cells largely diminishes TME-induced Foxp3 up-regulation, alters Treg metabolic signatures, impairs Treg-suppressive function, and alleviates Treg suppression on cytotoxic CD8+ T cells. Furthermore, we developed the first Usp22-specific small-molecule inhibitor, which dramatically reduced intratumoral Treg Foxp3 expression and consequently enhanced antitumor immunity. Our findings unveil previously unappreciated mechanisms underlying Treg fitness and identify Usp22 as an antitumor therapeutic target that inhibits Treg adaptability in the TME.
Collapse
Affiliation(s)
- Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Samuel E. Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Nikita L. Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yuanzhang Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Changhong Liu
- Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Chen Xin
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116021, China
| | - Shana Gregory
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - Wantao Chen
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhaolin Sun
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Ming Yan
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
- Department of Oral Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Long X, Luo C, Zhu Z. Role of CNSs Conserved Distal Cis-Regulatory Elements in CD4 + T Cell Development and Differentiation. Front Immunol 2022; 13:919550. [PMID: 35812386 PMCID: PMC9260786 DOI: 10.3389/fimmu.2022.919550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Naïve CD4+ T cells differentiate into diverse subsets of effector cells and perform various homeostatic and immune functions. The differentiation and maintenance of these different subsets are controlled through the upregulation and silencing of master genes. Mechanistic studies of the regulation of these master genes identified conserved and distal intronic regulatory elements, which are accessible subsets of conserved non-coding sequences (CNSs), acting as cis-regulatory elements in a lineage-specific manner that controls the function of CD4+ T cells. Abnormal CNS activity is associated with incorrect expression of master genes and development of autoimmune diseases or immune suppression. Here, we describe the function of several conserved, distal cis-regulatory elements at the Foxp3, Rorc, Il-4, Il-10 and Il-17 gene locus were shown to play important roles in CD4+ T cells differentiation. Together, this review briefly outlines currently known CNSs, with a focus on their regulations and functions in complexes modulating the differentiation and maintenance of various CD4+ T cells subsets, in health and disease contexts, as well as during the conversion of T regulatory cells to T helper 17 cells. This article will provide a comprehensive view of CNSs conserved distal cis-regulatory elements at a few loci that control aspects of CD4+ T cells function.
Collapse
Affiliation(s)
- Xunyi Long
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College of Nanchang University, Nanchang, China
| | - Chen Luo
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College of Nanchang University, Nanchang, China
- *Correspondence: Zhengming Zhu, ; Chen Luo,
| | - Zhengming Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhengming Zhu, ; Chen Luo,
| |
Collapse
|
3
|
Abstract
The transcription factor FOXP3 controls the immunosuppressive program in CD4+ T cells that is crucial for systemic immune regulation. Mutations of the single X-chromosomal FOXP3 gene in male individuals cause the inherited autoimmune disease immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome. Insufficient gene expression and impaired function of mutant FOXP3 protein prevent the generation of anti-inflammatory regulatory T (Treg) cells and fail to inhibit autoreactive T cell responses. Diversification of FOXP3 functional properties is achieved through alternative splicing that leads to isoforms lacking exon 2 (FOXP3Δ2), exon 7 (FOXP3Δ7), or both (FOXP3Δ2Δ7) specifically in human CD4+ T cells. Several IPEX mutations targeting these exons or promoting their alternative splicing revealed that those truncated isoforms cannot compensate for the loss of the full-length isoform (FOXP3fl). In this review, IPEX mutations that change the FOXP3 isoform profile and the resulting consequences for the CD4+ T-cell phenotype are discussed.
Collapse
Affiliation(s)
- Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Bassagh A, Hayatbakhsh Abasi M, Larussa T, Ghazizadeh M, Nemati M, Mirkamandar E, Jafarzadeh A. Diminished circulating concentration of interleukin-35 in Helicobacter pylori-infected patients with peptic ulcer: Its association with FOXP3 gene polymorphism, bacterial virulence factor CagA, and gender of patients. Helicobacter 2018; 23:e12501. [PMID: 29938865 DOI: 10.1111/hel.12501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND IL-35 modulates immune and inflammatory responses during infections. Here, we investigated IL-35 levels and a single nucleotide polymorphism, rs3761548, in FOXP3 gene in Helicobacter pylori-infected patients with peptic ulcer (PU), to clarify possible associations. MATERIALS AND METHODS This study includes 100 H. pylori-infected PU patients, 100 H. pylori-infected asymptomatic subjects (AS), and 100 noninfected healthy subjects (NHSs). Serum IL-35 levels and the genotyping were determined using ELISA and RFLP-PCR methods, respectively. RESULTS In PU patients, the IL-35 levels were lower than AS and NHS groups (P < .001). The IL-35 levels in CagA+ H. pylori-infected participants from PU and AS groups were lower than individuals infected with CagA- strains (P < .02 and P < .04, respectively). Women had higher IL-35 levels than men among PU, AS, and NHS groups (P < .0001). In PU patients, AA genotype and A allele at rs3761548 were more frequent than total healthy subjects (AS + NHS groups) and associated with an increased PU risk (AA genotype: OR = 5.51, P < .0001; A allele: OR = 3.857, P < .002). In PU and AS groups, IL-35 levels were lower in subjects displaying AA genotype or A allele than subjects displaying CC genotype or C allele, respectively (P < .0001 and P < .03 for PU patients; P < .001 and P < .02 for AS group, respectively). CONCLUSIONS Decreased IL-35 levels could be involved in PU development in H. pylori-infected individuals. IL-35 levels are affected by CagA status of H. pylori, participants gender, and genetic variations at rs3761548. The AA genotype and A allele at rs3761548 could represent a risk factor for PU development.
Collapse
Affiliation(s)
- Arezoo Bassagh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | | | - Maryam Nemati
- Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Mirkamandar
- Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran.,Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|