1
|
Okpoluaefe S, Ismail IS, Mohamed R, Hassan N. Adaptive natural killer cell expression in response to cytomegalovirus infection in blood and solid cancer. Heliyon 2024; 10:e32622. [PMID: 38961938 PMCID: PMC11219991 DOI: 10.1016/j.heliyon.2024.e32622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Natural Killer (NK) cells are conventionally thought to be an indefinite part of innate immunity. However, in a specific subset of NK cells, recent data signify an extension of their "duties" in immune surveillance and response, having characteristics of adaptive immunity, in terms of persistence and cytotoxicity. These cells are known as the adaptive or memory-like NK cells, where human cytomegalovirus (HCMV) infection has been shown to drive the expansion of adaptive NKG2C+ NK cells. HCMV is a ubiquitous pathogen whose prevalence differs worldwide with respect to the socioeconomic status of countries. The adaptive NK cell subpopulation is often characterized by the upregulated expression of NKG2C, CD16, and CD2, and restricted expression of NKG2A, FCεRγ and killer immunoglobulin-like receptors (KIR), although these phenotypes may differ in different disease groups. The reconfiguration of these receptor distributions has been linked to epigenetic factors. Hence, this review attempts to appraise literature reporting markers associated with adaptive or memory-like NK cells post-HCMV infection, in relation to solid cancers and hematological malignancies. Adaptive NK cells, isolated and subjected to ex vivo modifications, have the potential to enhance anti-tumor response which can be a promising strategy for adoptive immunotherapy.
Collapse
Affiliation(s)
- Suruthimitra Okpoluaefe
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Rafeezul Mohamed
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Norfarazieda Hassan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| |
Collapse
|
2
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 PMCID: PMC10930942 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal;
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.R.L.); (M.M.)
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; (M.T.); (S.P.); (R.R.)
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
3
|
Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. Activating NKG2C Receptor: Functional Characteristics and Current Strategies in Clinical Applications. Arch Immunol Ther Exp (Warsz) 2023; 71:9. [PMID: 36899273 PMCID: PMC10004456 DOI: 10.1007/s00005-023-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023]
Abstract
The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Marzec-Przyszlak
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
4
|
Assessment of NKG2C copy number variation in HIV-1 infection susceptibility, and considerations about the potential role of lacking receptors and virus infection. J Hum Genet 2022; 67:475-479. [PMID: 35314764 PMCID: PMC8938163 DOI: 10.1038/s10038-022-01029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022]
Abstract
Human Immunodeficiency Virus (HIV) infection dynamics is strongly influenced by the host genetic background. NKG2C is an activating receptor expressed mainly on Natural Killer (NK) cells, and a polymorphism of copy number variation in the gene coding for this molecule has been pointed as a potential factor involved in HIV infection susceptibility. We evaluated the impact of the NKG2C deletion on HIV-1 susceptibility, with or without HBV/HCV co-infection, in a total of 780 individuals, including 385 HIV-infected patients and 395 healthy blood donors. NKG2C deletion genotyping was performed by standard PCR. To our knowledge, this is the first study to access the impact of complete NKG2C deletion among HIV-infected Brazilian individuals. The frequency of NKG2C deletion (range: 19–22%) was similar in cases and controls. No association of NKG2C deletion with HIV-1 susceptibility or influence on clinical features, HBV or HCV co-infection was observed in the evaluated population. Our findings suggest that NKG2C deletion, and the consequent absence of this receptor expression, does not directly impact HIV susceptibility, HBV/HCV-co-infection in the studied population, suggesting that other signaling pathways might be triggered and perform similar functions in cell activity in the absence of this specific receptor, preventing the development of disadvantageous phenotypes. Larger cohorts and studies involving protein expression are necessary to confirm our findings.
Collapse
|
5
|
Abstract
Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we review recent insights into the role of NK cells in viral infections, with particular emphasis on human studies. We first discuss NK cells in the context of acute viral infections, with flavivirus and influenza virus infections as examples. Questions related to activation of NK cells, homing to infected tissues and the role of tissue-resident NK cells in acute viral infections are also addressed. Next, we discuss NK cells in the context of chronic viral infections with hepatitis C virus and HIV-1. Also covered is the role of adaptive-like NK cell expansions as well as the appearance of CD56- NK cells in the course of chronic infection. Specific emphasis is then placed in viral infections in patients with primary immunodeficiencies affecting NK cells. Not least, studies in this area have revealed an important role for NK cells in controlling several herpesvirus infections. Finally, we address new data with respect to the activation of NK cells and NK cell function in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Tarannum M, Romee R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res Ther 2021; 12:592. [PMID: 34863287 PMCID: PMC8642969 DOI: 10.1186/s13287-021-02655-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer cells are an important part of the innate immune system mediating robust responses to virus-infected and malignant cells without needing prior antigen priming. NK cells have always been thought to be short-lived and with no antigen specificity; however, recent data support the presence of NK cell memory including in the hapten-specific contact hypersensitivity model and in certain viral infections. The memory-like features can also be generated by short-term activation of both murine and human NK cells with cytokine combination of IL-12, IL-15 and IL-18, imparting increased longevity and enhanced anticancer functionality. Preclinical studies and very early clinical trials demonstrate safety and very promising clinical activity of these cytokine-induced memory-like (CIML) NK cells, making them an attractive cell type for developing novel adoptive cellular immunotherapy strategies. Furthermore, efforts are on to arm them with novel gene constructs for enhanced tumor targeting and function.
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Rizwan Romee
- Division of Cellular Therapy and Stem Cell Transplantation, Dana Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Urban S, Neumann-Haefelin C, Lampertico P. Hepatitis D virus in 2021: virology, immunology and new treatment approaches for a difficult-to-treat disease. Gut 2021; 70:1782-1794. [PMID: 34103404 PMCID: PMC8355886 DOI: 10.1136/gutjnl-2020-323888] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Approximately 5% of individuals infected with hepatitis B virus (HBV) are coinfected with hepatitis D virus (HDV). Chronic HBV/HDV coinfection is associated with an unfavourable outcome, with many patients developing liver cirrhosis, liver failure and eventually hepatocellular carcinoma within 5-10 years. The identification of the HBV/HDV receptor and the development of novel in vitro and animal infection models allowed a more detailed study of the HDV life cycle in recent years, facilitating the development of specific antiviral drugs. The characterisation of HDV-specific CD4+ and CD8+T cell epitopes in untreated and treated patients also permitted a more precise understanding of HDV immunobiology and possibly paves the way for immunotherapeutic strategies to support upcoming specific therapies targeting viral or host factors. Pegylated interferon-α has been used for treating HDV patients for the last 30 years with only limited sustained responses. Here we describe novel treatment options with regard to their mode of action and their clinical effectiveness. Of those, the entry-inhibitor bulevirtide (formerly known as myrcludex B) received conditional marketing authorisation in the European Union (EU) in 2020 (Hepcludex). One additional drug, the prenylation inhibitor lonafarnib, is currently under investigation in phase III clinical trials. Other treatment strategies aim at targeting hepatitis B surface antigen, including the nucleic acid polymer REP2139Ca. These recent advances in HDV virology, immunology and treatment are important steps to make HDV a less difficult-to-treat virus and will be discussed.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,CRC “A. M. and A. Migliavacca” Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Legrand N, David G, Rodallec A, Gaultier A, Salmon D, Cesbron A, Wittkop L, Raffi F, Gendzekhadze K, Retière C, Allavena C, Gagne K. Influence of HLA-C environment on the spontaneous clearance of hepatitis C in European HIV-HCV co-infected individuals. Clin Exp Immunol 2021; 204:107-124. [PMID: 33314121 DOI: 10.1111/cei.13562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell functions are regulated by diverse inhibitory and activating receptors, including killer cell immunoglobulin-like receptors (KIR), which interact with human leukocyte antigen (HLA) class I molecules. Some KIR/HLA genetic combinations were reported associated with spontaneous clearance (SC) of hepatitis C virus (HCV) but with discordant results, possibly reflecting KIR and/or HLA gene polymorphism according to populations. KIR/HLA genetic combinations associated with both an exhaustive NK and T cell repertoire were investigated in a cohort of HIV-HCV co-infected individuals with either SC (n = 68) or chronic infection (CI, n = 163) compared to uninfected blood donors [controls (Ctrl), n = 100]. Multivariate analysis showed that the HLA C2C2 environment was associated with SC only in European HIV-HCV co-infected individuals [odds ratio (OR) = 4·30, 95% confidence interval = 1·57-12·25, P = 0·005]. KIR2D+ NK cell repertoire and potential of degranulation of KIR2DL1/S1+ NK cells were similar in the SC European cohort compared to uninfected individuals. In contrast, decreased frequencies of KIR2DS1+ and KIR2DL2+ NK cells were detected in the CI group of Europeans compared to SC and a decreased frequency of KIR2DL1/S1+ NK cells compared to controls. Regarding T cells, higher frequencies of DNAX accessory molecule-1 (DNAM-1)+ and CD57+ T cells were observed in SC in comparison to controls. Interestingly, SC subjects emphasized increased frequencies of KIR2DL2/L3/S2+ T cells compared to CI subjects. Our study underlines that the C2 environment may activate efficient KIR2DL1+ NK cells in a viral context and maintain a KIR2DL2/L3/S2+ mature T cell response in the absence of KIR2DL2 engagement with its cognate ligands in SC group of HCV-HIV co-infected European patients.
Collapse
Affiliation(s)
- N Legrand
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France
| | - G David
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France
| | - A Rodallec
- Department of Virology, CHU Nantes Hotel Dieu, Nantes, France
| | - A Gaultier
- Department of Biostatistics, CHU Hotel Dieu, Nantes, France
| | - D Salmon
- AP-HP Department of Infectious Diseases, Université Paris Descartes, Paris, France
| | | | - L Wittkop
- INSERM UMR1219, Université de Bordeaux ISPED, Bordeaux, France
| | - F Raffi
- Department of Infectious Diseases, Nantes, France
| | - K Gendzekhadze
- Division of Hematology and Bone Marrow Transplantation, Duarte, CA, USA
| | - C Retière
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO, Nantes, France
| | - C Allavena
- Department of Infectious Diseases, Nantes, France
| | - K Gagne
- Etablissement Français du Sang (EFS), Nantes, France.,Université de Nantes, INSERM U1232 CNRS, CRCINA, Nantes, France.,LabEx IGO, Nantes, France.,LabEx Transplantex, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Zhou Y, He Y, Chang Y, Peng X, Zhao R, Peng M, Hu P, Ren H, Chen M, Xu H. The Characteristics of Natural Killer Cells and T Cells Vary With the Natural History of Chronic Hepatitis B in Children. Front Pediatr 2021; 9:736023. [PMID: 34900857 PMCID: PMC8656424 DOI: 10.3389/fped.2021.736023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: The immune status of children with chronic hepatitis B (CHB) in different phases is still unclear. The aim of this study was to investigate the phenotype and cytokine-producing ability of natural killer (NK) and T cells and to better understand the immune characteristics of children with different phases of CHB. Methods: Treatment-naive children with CHB were divided into groups with different clinical phases of CHB. Fresh peripheral blood drawn from hepatitis B virus (HBV)-infected and healthy children was processed to perform flow cytometric analysis. Results: A total of 112 treatment-naive children with CHB and 16 comparable healthy controls were included in this study. The expression of HLA-DR on NK cells and CD38 on T cells were upregulated, especially in the IA phase, in children with CHB compared with healthy controls. The ability of circulating NK cells instead of CD8+ T cells to produce IFN-γ in children with CHB was slightly increased, but TNF-α production seemed to be decreased compared with that in healthy controls. The expression of some activation markers varied among children with different phases of CHB, especially the higher CD38 expression found on T cells in the IA phase. Regression analysis revealed that IFN-γ and TNF-α production by NK cells and CD8+ T cells seemed to have positive correlations with ALT elevation and an activated status of NK cells or T cells. Conclusion: NK cells and T cells tended to be phenotypically activated (especially in the IA phase) in children with CHB compared with healthy controls. However, their cytokine-producing function was not obviously elevated, especially IFN-γ production by CD8+ T cells. More studies investigating the mechanism and observing the longitudinal changes in the immune status in children with CHB are needed.
Collapse
Affiliation(s)
- Yingzhi Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Yi He
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Yunan Chang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Xiaorong Peng
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Ruiqiu Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Xu Q, Tang Y, Huang G. Innate immune responses in RNA viral infection. Front Med 2020; 15:333-346. [PMID: 33263837 PMCID: PMC7862985 DOI: 10.1007/s11684-020-0776-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/14/2020] [Indexed: 12/17/2022]
Abstract
RNA viruses cause a multitude of human diseases, including several pandemic events in the past century. Upon viral invasion, the innate immune system responds rapidly and plays a key role in activating the adaptive immune system. In the innate immune system, the interactions between pathogen-associated molecular patterns and host pattern recognition receptors activate multiple signaling pathways in immune cells and induce the production of pro-inflammatory cytokines and interferons to elicit antiviral responses. Macrophages, dendritic cells, and natural killer cells are the principal innate immune components that exert antiviral activities. In this review, the current understanding of innate immunity contributing to the restriction of RNA viral infections was briefly summarized. Besides the main role of immune cells in combating viral infection, the intercellular transfer of pathogen and host-derived materials and their epigenetic and metabolic interactions associated with innate immunity was discussed. This knowledge provides an enhanced understanding of the innate immune response to RNA viral infections in general and aids in the preparation for the existing and next emerging viral infections.
Collapse
Affiliation(s)
- Qian Xu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuting Tang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Barnes S, Schilizzi O, Audsley KM, Newnes HV, Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int J Mol Sci 2020; 21:ijms21228864. [PMID: 33238550 PMCID: PMC7700325 DOI: 10.3390/ijms21228864] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play a significant and vital role in the first line of defense against infection through their ability to target cells without prior sensitization. They also contribute significantly to the activation and recruitment of both innate and adaptive immune cells through the production of a range of cytokines and chemokines. In the context of cytomegalovirus (CMV) infection, NK cells and CMV have co-evolved side by side to employ several mechanisms to evade one another. However, during this co-evolution the discovery of a subset of long-lived NK cells with enhanced effector potential, increased antibody-dependent responses and the potential to mediate immune memory has revolutionized the field of NK cell biology. The ability of a virus to imprint on the NK cell receptor repertoire resulting in the expansion of diverse, highly functional NK cells to this day remains a significant immunological phenomenon that only occurs in the context of CMV. Here we review our current understanding of the development of these NK cells, commonly referred to as adaptive NK cells and their current role in transplantation, infection, vaccination and cancer immunotherapy to decipher the complex role of CMV in dictating NK cell functional fate.
Collapse
Affiliation(s)
- Samantha Barnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ophelia Schilizzi
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- Correspondence:
| |
Collapse
|
12
|
Fisicaro P, Rossi M, Vecchi A, Acerbi G, Barili V, Laccabue D, Montali I, Zecca A, Penna A, Missale G, Ferrari C, Boni C. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int J Mol Sci 2019; 20:ijms20205080. [PMID: 31614928 PMCID: PMC6834135 DOI: 10.3390/ijms20205080] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Immune modulatory therapies are widely believed to represent potential therapeutic strategies for chronic hepatitis B infection (CHB). Among the cellular targets for immune interventions, Natural Killer (NK) cells represent possible candidates because they have a key role in anti-viral control by producing cytokines and by exerting cytotoxic functions against virus-infected cells. However, in patients with chronic hepatitis B, NK cells have been described to be more pathogenic than protective with preserved cytolytic activity but with a poor capacity to produce anti-viral cytokines. In addition, NK cells can exert a regulatory activity and possibly suppress adaptive immune responses in the setting of persistent viral infections. Consequently, a potential drawback of NK-cell targeted modulatory interventions is that they can potentiate the suppressive NK cell effect on virus-specific T cells, which further causes impairment of exhausted anti-viral T cell functions. Thus, clinically useful NK-cell modulatory strategies should be not only suited to improve positive anti-viral NK cell functions but also to abrogate T cell suppression by NK cell-mediated T cell killing. This review outlines the main NK cell features with a particular focus on CHB infection. It describes different mechanisms involved in NK-T cell interplay as well as how NK cells can have positive anti-viral effector functions and negative suppressive effects on T cells activity. This review discusses how modulation of their balance can have potential therapeutic implications.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| |
Collapse
|
13
|
Li Q, Liu S, Zhang S, Liu C, Sun M, Li C, Zhang X, Chen J, Yao Y, Shi L. Human leucocyte antigen but not KIR alleles and haplotypes associated with chronic HCV infection in a Chinese Han population. Int J Immunogenet 2019; 46:263-273. [PMID: 30932338 DOI: 10.1111/iji.12425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
The host immune system plays a key role in the elimination of infected cells which depend on killer-cell immunoglobulin-like receptors (KIR), human leucocyte antigen (HLA) class I molecules and their combinations. To evaluate the roles of HLAclass I, KIR genes and their combination in Chronic hepatitis C virus (HCV) infection (CHC), a total of 301 CHCs and 239 controls in a Chinese Han population were included for HLA and KIR genotyping using next-generation sequencing and multiplex PCR sequence-specific priming, respectively. The allele frequency of HLA-C*08:01 was significantly higher in the CHCs than that of the controls (0.088 vs. 0.040, OR = 2.332, 95%CI: 1.361-3.996, p = 0.022), while the frequencies of B*13:01 (0.032 vs. 0.084, OR = 0.357, 95%CI: 0.204-0.625, p = 0.009) and C*08:04 (0.008 vs. 0.038, OR = 0.214, 95%CI: 0.079-0.581, p = 0.022) were significantly lower in the CHCs. The frequencies of haplotype A*11:01-C*08:01 were higher in the CHCs (0.058 vs. 0.019, OR = 3.096, 95%CI: 1.486-6.452, p = 0.026), while haplotype B*13:01-C*03:04 were lower in the CHCs compared to the controls (0.028 vs. 0.071, OR = 0.377, 95%CI: 0.207-0.685, p = 0.012). No association of CHC with KIR genes, genotypes, or haplotypes, as well as HLA/KIR combinations was observed. Our results indicated that HLA-C*08:01 was a risk factor for CHC, while HLA-C*08:04 and HLA-B*13:01 were protective factors against CHC. Haplotypes HLA-A*11:01-C*08:01 could increase susceptibility to CHC, while HLA-B*13:01-C*03:04 could be protective against CHC in the Chinese Han population.
Collapse
Affiliation(s)
- Qiongfen Li
- Division for Expended Program of Immunization of Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | | | - Chengxiu Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
14
|
Comeau EM, Holder KA, Fudge NJ, Grant MD. Cytomegalovirus-Driven Adaption of Natural Killer Cells in NKG2C null Human Immunodeficiency Virus-Infected Individuals. Viruses 2019; 11:v11030239. [PMID: 30857329 PMCID: PMC6466323 DOI: 10.3390/v11030239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
Expansion of natural killer (NK) cells expressing NKG2C occurs following human cytomegalovirus (HCMV) infection and is amplified by human immunodeficiency virus (HIV) co-infection. These NKG2C-expressing NK cells demonstrate enhanced CD16-dependent cytokine production and downregulate FcεRIγ and promyelocytic leukemia zinc finger protein (PLZF). Lacking NKG2C diminishes resistance to HIV infection, but whether this affects NK cell acquisition of superior antibody-dependent function is unclear. Therefore, our objective was to investigate whether HCMV-driven NK cell differentiation is impaired in NKG2Cnull HIV-infected individuals. Phenotypic (CD2, CD16, CD57, NKG2A, FcεRIγ, and PLZF expression) and functional (cytokine induction and cytotoxicity) properties were compared between HIV⁻infected NKG2Cnull and NKG2C-expressing groups. Cytokine production was compared following stimulation through natural cytotoxicity receptors or through CD16. Cytotoxicity was measured by anti-CD16-redirected lysis and by classical antibody-dependent cell-mediated cytotoxicity (ADCC) against anti-class I human leukocyte antigen (HLA) antibody-coated cells. Our data indicate highly similar HCMV-driven NK cell differentiation in HIV infection with or without NKG2C. While the fraction of mature (CD57pos) NK cells expressing CD2 (p = 0.009) or co-expressing CD2 and CD16 (p = 0.03) was significantly higher in NKG2Cnull HIV-infected individuals, there were no significant differences in NKG2A, FcεRIγ, or PLZF expression. The general phenotypic and functional equivalency observed suggests NKG2C-independent routes of HCMV-driven NK cell differentiation, which may involve increased CD2 expression.
Collapse
Affiliation(s)
- Emilie M Comeau
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philp Drive, St. John's, NL A1B 3V6, Canada.
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Lucy Golden-Mason
- Department of Medicine, Keck School of Medicine, Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
NK-cell responses are biased towards CD16-mediated effector functions in chronic hepatitis B virus infection. J Hepatol 2019; 70:351-360. [PMID: 30342116 DOI: 10.1016/j.jhep.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Phenotypic and functional natural killer (NK)-cell alterations are well described in chronic hepatitis B virus (cHBV) infection. However, it is largely unknown whether these alterations result from general effects on the overall NK-cell population or the emergence of distinct NK-cell subsets. Human cytomegalovirus (HCMV) is common in cHBV and is associated with the emergence of memory-like NK cells. We aimed to assess the impact of these cells on cHBV infection. METHODS To assess the impact of memory-like NK cells on phenotypic and functional alterations in cHBV infection, we performed in-depth analyses of circulating NK cells in 52 patients with cHBV, 45 with chronic hepatitis C virus infection and 50 healthy donors, with respect to their HCMV serostatus. RESULTS In patients with cHBV/HCMV+, FcεRIγ- memory-like NK cells were present in higher frequencies and with higher prevalence than in healthy donors with HCMV+. This pronounced HCMV-associated memory-like NK-cell expansion could be identified as key determinant of the NK-cell response in cHBV infection. Furthermore, we observed that memory-like NK cells consist of epigenetically distinct subsets and exhibit key metabolic characteristics of long-living cells. Despite ongoing chronic infection, the phenotype of memory-like NK cells was conserved in patients with cHBV/HCMV+. Functional characteristics of memory-like NK cells also remained largely unaffected by cHBV infection with the exception of an increased degranulation capacity in response to CD16 stimulation that was, however, detectable in both memory-like and conventional NK cells. CONCLUSIONS The emergence of HCMV-associated memory-like NK cells shapes the overall NK-cell response in cHBV infection and contributes to a general shift towards CD16-mediated effector functions. Therefore, HCMV coinfection needs to be considered in the design of immunotherapeutic approaches that target NK cells in cHBV. LAY SUMMARY In chronic hepatitis B virus infection, natural killer (NK)-cell phenotype and function is altered. In this study, we demonstrate that these changes are linked to the emergence of a distinct NK-cell subset, namely memory-like NK cells. The emergence of these memory-like NK cells is associated with coinfection of human cytomegalovirus that affects the majority of patients with chronic hepatitis B.
Collapse
|
17
|
Beaulieu AM. Memory responses by natural killer cells. J Leukoc Biol 2018; 104:1087-1096. [DOI: 10.1002/jlb.1ri0917-366r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Aimee M. Beaulieu
- Center for Immunity and InflammationNew Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers—The State University of New Jersey Newark New Jersey USA
- Department of Microbiology, Biochemistry, and Molecular GeneticsNew Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers—The State University of New Jersey Newark New Jersey USA
| |
Collapse
|
18
|
Hammer Q, Rückert T, Romagnani C. Natural killer cell specificity for viral infections. Nat Immunol 2018; 19:800-808. [PMID: 30026479 DOI: 10.1038/s41590-018-0163-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are lymphocytes that contribute to the early immune responses to viruses. NK cells are innate immune cells that do not express rearranged antigen receptors but sense their environment via receptors for pro-inflammatory cytokines, as well as via germline-encoded activating receptors specific for danger or pathogen signals. A group of such activating receptors is stochastically expressed by certain subsets within the NK cell compartment. After engagement of the cognate viral ligand, these receptors contribute to the specific activation and 'preferential' population expansion of defined NK cell subsets, which partially recapitulate some features of adaptive lymphocytes. In this Review, we discuss the numerous modes for the specific recognition of viral antigens and peptides by NK cells and the implications of this for the composition of the NK cell repertoire as well as for the the selection of viral variants.
Collapse
Affiliation(s)
- Quirin Hammer
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany. .,Medical Department I, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Bernson E, Hallner A, Sander FE, Nicklasson M, Nilsson MS, Christenson K, Aydin E, Liljeqvist JÅ, Brune M, Foà R, Aurelius J, Martner A, Hellstrand K, Thorén FB. Cytomegalovirus Serostatus Affects Autoreactive NK Cells and Outcomes of IL2-Based Immunotherapy in Acute Myeloid Leukemia. Cancer Immunol Res 2018; 6:1110-1119. [PMID: 29980537 DOI: 10.1158/2326-6066.cir-17-0711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/13/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
Human cytomegalovirus (CMV) infection is reported to promote NK cell differentiation and education. The CMV-induced generation of highly differentiated adaptive-like NK cells has been proposed to affect favorably on the maintenance of remission in patients with acute myeloid leukemia (AML) after allogeneic stem cell transplantation (allo-SCT). The impact of CMV infection and adaptive-like NK cells on relapse and survival of patients with AML not receiving allo-SCT remains unknown. We assayed CMV IgG serostatus to determine past CMV infection in 81 nontransplanted AML patients who were receiving relapse-prevention immunotherapy comprising histamine dihydrochloride and low-dose interleukin-2 (HDC/IL2; NCT01347996). CMV seropositivity correlated negatively with leukemia-free and overall survival of patients receiving HDC/IL2, but did not correlate with outcomes in a contemporary control cohort. Analysis of outcome after stratification of patients based on concordant or discordant killer immunoglobulin-like receptor (KIR) and HLA genotypes implied that the negative impact of CMV seropositivity was restricted to patients lacking a ligand to inhibitory KIRs (iKIR). Previous CMV infection was also associated with fewer NK cells expressing only nonself iKIRs (NS-iKIR). We propose that CMV-driven NK cell education depletes the population of NS-iKIR NK cells, which in turn reduces the clinical benefit of relapse-preventive immunotherapy in AML. Cancer Immunol Res; 6(9); 1110-9. ©2018 AACR.
Collapse
Affiliation(s)
- Elin Bernson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Hallner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Frida E Sander
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Malin Nicklasson
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Malin S Nilsson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Ebru Aydin
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Jan-Åke Liljeqvist
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Mats Brune
- Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Robin Foà
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Sapienza, Italy
| | - Johan Aurelius
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
20
|
Hammer Q, Rückert T, Dunst J, Romagnani C. Adaptive Natural Killer Cells Integrate Interleukin-18 during Target-Cell Encounter. Front Immunol 2018; 8:1976. [PMID: 29387058 PMCID: PMC5776097 DOI: 10.3389/fimmu.2017.01976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection induces adaptations in the natural killer (NK)-cell compartment. Expanded subsets of adaptive NK cells display potent effector functions against cellular targets, despite their apparent unresponsiveness to stimulation with classical dendritic cell-derived cytokines interleukin (IL)-12 and IL-18. However, it remains unclear whether adaptive NK cells have completely lost their ability to sense inflammation via IL-12 and IL-18 or whether these pro-inflammatory signals can be functionally integrated into defined contexts. Here, we demonstrate that adaptive NKG2C+ NK cells can be costimulated by the presence of pro-inflammatory cytokines during target cell-induced activation. Cytokine costimulation of adaptive NK cells resulted in elevated interferon (IFN)-gamma and tumor necrosis factor (TNF) production, which promoted protein expression of HLA class I and adhesion molecules as well as transcription of genes involved in antigen processing and antiviral states in endothelial bystander cells in vitro. We further show that IL-18 drove costimulation in functional assays and was sufficient for elevated cytokine production in the absence of IL-12. Hence, adaptive NKG2C+ NK cells-although poorly responsive to IL-12 and IL-18 as an isolated stimulus-integrate IL-18 as a costimulatory signal during target-cell encounter.
Collapse
Affiliation(s)
- Quirin Hammer
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Josefine Dunst
- Inflammation Biology, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany.,Medical Department I, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
21
|
Podhorzer A, Dirchwolf M, Machicote A, Belen S, Montal S, Paz S, Fainboim H, Podestá LG, Fainboim L. The Clinical Features of Patients with Chronic Hepatitis C Virus Infections Are Associated with Killer Cell Immunoglobulin-Like Receptor Genes and Their Expression on the Surface of Natural Killer Cells. Front Immunol 2018; 8:1912. [PMID: 29354127 PMCID: PMC5760500 DOI: 10.3389/fimmu.2017.01912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Killer cell immunoglobulin-like receptor (KIR) genes are known to play a role in the acute phase of hepatitis C virus (HCV) infection. The present study investigated their roles in chronic HCV (CHCV) infection by analyzing the phenotypes and function of natural killer (NK) and T cells that express KIRs. T cells from CHCV patients showed a more differentiated phenotype, and NK cells exhibited an activated profile. These observations are consistent with the increased expression of the degranulation marker CD107a observed after PMA stimulation. We explored the correlations between the expression of KIR genes and lectin type-C receptors with clinical factors that predict progression to fibrosis and cirrhosis. The expression levels of KIR2DS3 and the functional alleles of KIR2DS4-FL were increased in patients with intermediate and high viral loads. Homozygous KIR2DS4 was also associated with the presence of cirrhosis. In the group of individuals with a shorter infection time who developed cirrhosis, we detected decreased expression of KIR3DL1 in CD56dim NK cells in the presence of its ligand. Similarly, in the group of patients with late CHCV infections complicated with cirrhosis, we detected lower expression of the strong inhibitory receptor NKG2A in CD56bright NK cells. We also detected an increase in NKG2C expression in CD56dim NK cells in CHCV patients who displayed high necroinflammatory activity. Decreased KIR3DL2 expression in CD56dim and CD56bright NK cells was associated with a high body mass index, and KIR3DL2 expression may be one factor associated with the more rapid progression of CHCV to fibrosis in patients.
Collapse
Affiliation(s)
- Ariel Podhorzer
- Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Dirchwolf
- Hepatopatías Infecciosas, Hospital Francisco J. Muñiz, Buenos Aires, Argentina
| | - Andrés Machicote
- Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Belen
- Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Montal
- Unidad de Cirugía Hepato-Biliar y Trasplante, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Silvia Paz
- Hepatopatías Infecciosas, Hospital Francisco J. Muñiz, Buenos Aires, Argentina
| | - Hugo Fainboim
- Hepatopatías Infecciosas, Hospital Francisco J. Muñiz, Buenos Aires, Argentina
| | - Luis G Podestá
- Unidad de Cirugía Hepato-Biliar y Trasplante, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Leonardo Fainboim
- Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina de la Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Peppa D. Natural Killer Cells in Human Immunodeficiency Virus-1 Infection: Spotlight on the Impact of Human Cytomegalovirus. Front Immunol 2017; 8:1322. [PMID: 29089947 PMCID: PMC5650968 DOI: 10.3389/fimmu.2017.01322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been closely associated with the human race across evolutionary time. HCMV co-infection is nearly universal in human immunodeficiency virus-1 (HIV-1)-infected individuals and remains an important cofactor in HIV-1 disease progression even in the era of effective antiretroviral treatment. HCMV infection has been shown to have a broad and potent influence on the human immune system and has been linked with the discovery and characterization of adaptive natural killer (NK) cells. Distinct NK-cell subsets, predominately expressing the activating receptor NKG2C and the marker of terminal differentiation CD57, expand in response to HCMV. These NK-cell populations engaged in the long-lasting interaction with HCMV, in addition to characteristic but variable expression of surface receptors, exhibit reduced expression of signaling proteins and transcription factors expressed by canonical NK cells. Broad epigenetic modifications drive the emergence and persistence of HCMV-adapted NK cells that have distinct functional characteristics. NKG2C+ NK-cell expansions have been observed in HIV-1 infected patients and other acute and chronic viral infections being systematically associated with HCMV seropositivity. The latter is potentially an important confounding variable in studies focused on the cellular NK-cell receptor repertoire and functional capacity. Here, focusing on HIV-1 infection we review the evidence in favor of “adaptive” changes likely induced by HCMV co-infection in NK-cell subsets. We highlight a number of key questions and how insights into the adaptive behavior of NK cells will inform new strategies exploiting their unique properties in the fight against HIV-1.
Collapse
Affiliation(s)
- Dimitra Peppa
- Division of Infection and Immunity, University College London, London, United Kingdom.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|