1
|
Xu S, Yu L, Teng Q, Li X, Jin Z, Qu Y, Li J, Zhang Q, Li Z, Zhao K. Enhance immune response to H9 AIV DNA vaccine based on polygene expression and DGL nanoparticle encapsulation. Poult Sci 2023; 102:102925. [PMID: 37542938 PMCID: PMC10428121 DOI: 10.1016/j.psj.2023.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 08/07/2023] Open
Abstract
DNA vaccination has great potential to treat or prevent avian influenza pandemics, but the technique may be limited by low immunogenicity and gene delivery in clinical testing. Here, to improve the immune efficacy of DNA vaccines against avian influenza, we prepared and tested the immunogenicity of 4 recombinant DNA vaccines containing 2 or 3 AIV antigens. The results revealed that chickens and mice immunized with plasmid DNA containing 3 antigens (HA gene from H9N2, and NA and HA genes from H5N1) exhibited a robust immune response than chickens and mice immunized with plasmid DNAs containing 2 antigenic genes. Subsequently, this study used pβH9N1SH5 as a model antigen to study the effect of dendritic polylysine (DGL) nanoparticles as a gene delivery system and adjuvant on antigen-specific immunity in mice models. At a ratio of 1:3 DGL/pβH9N1SH5 (w/w), the pβH9N1SH5/DGL NPs showed excellent physical and chemical properties, induced higher levels of HI antibodies, and larger CD3+/CD4+ T lymphocyte and CD3+/CD8+ T lymphocyte population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2 compared with the naked pβH9N1SH5. Therefore, multiantigen gene expression methods using DGL as a delivery system may have broad application prospects in gene therapy.
Collapse
Affiliation(s)
- Shangen Xu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Lu Yu
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qiaoyang Teng
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xuesong Li
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zheng Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Yang Qu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Jiawei Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Qihong Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Zejun Li
- Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Kai Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Institute of Nanobiomaterials and Immunology, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| |
Collapse
|