1
|
Hadjadj J, Wolfers A, Borisov O, Hazard D, Leahy R, Jeanpierre M, Belot A, Bakhtiar S, Hauck F, Lee PY, Volpi S, Palmeri S, Barlogis V, Aladjidi N, Ebetsberger-Dachs G, Avouac J, Charbit-Henrion F, Cheminant M, Donadieu J, Ghosh S, Hoytema van Konijnenburg DP, Körholz J, Bustamante J, Rosain J, Forbes Satter L, Selmeryd I, Sogkas G, Neven B, Rieux-Laucat F, Ehl S. Clinical manifestations, disease penetrance, and treatment in individuals with SOCS1 insufficiency: a registry-based and population-based study. THE LANCET. RHEUMATOLOGY 2025:S2665-9913(24)00348-5. [PMID: 40024253 DOI: 10.1016/s2665-9913(24)00348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 03/04/2025]
Abstract
BACKGROUND Suppressor of cytokine signalling 1 (SOCS1) insufficiency is an inborn error of immunity affecting the negative regulation of cytokine and growth factor signalling. We aimed to enhance the understanding of clinical manifestations, disease trajectories, disease penetrance, and the effect of Janus kinase (JAK) inhibition in individuals with SOCS1 insufficiency. METHODS This study used data from two independent cohorts: the European Society for Immunodeficiencies (ESID) registry and the UK Biobank. Participants from the ESID registry were from nine European countries (Austria, Belgium, France, Germany, Ireland, Italy, Portugal, Sweden, and Ukraine), China, Taiwan, and the USA. Participants from the ESID registry were eligible if they had heterozygous, functionally validated SOCS1 variants; participants from the UK Biobank were included if they had any SOCS1 variant detected in the ESID registry cohort or any other SOCS1 variant that was classed as high-impact. Clinical manifestations of the underlying SOCS1 insufficiency were documented and summarised into nine subgroups, with ICD-10 diagnosis codes collected for participants from the UK Biobank. Participants from the ESID registry were tested for relevant autoantibodies in their local laboratory. Responses to JAK inhibitor treatment in participants from the ESID registry were assessed by the treating physician using a visual analogue scale. Descriptive statistics were used for analysis. People with lived experience were not involved in the study design. FINDINGS We included 119 participants with SOCS1 insufficiency: 67 from the ESID registry, enrolled between Feb 15, 2021, and Dec 31, 2023, and 52 from the UK Biobank. Of the 67 participants from the ESID registry, 39 (58%) were female, 28 (42%) were male, and the median age was 28 years (IQR 15-44, range 2-85). 27 different monoallelic SOCS1 variants were identified in these participants. 62 (93%) of the 67 participants in the ESID registry cohort were symptomatic and five (7%) were asymptomatic family members; of the 62 participants with symptoms, allergy (33 [50%]), inflammatory gastrointestinal (22 [36%]) and skin (18 [29%]) manifestations, autoimmune cytopenia (24 [39%]), and lymphoproliferation (23 [37%]) were most frequent. Rheumatological manifestations (23 [37%]) included systemic lupus erythematosus, Sjögren's disease, and rheumatoid arthritis, with typical autoantibody profiles. 42 (68%) of the 62 symptomatic participants had at least three different manifestations. In the UK Biobank we found 52 participants carrying high-impact SOCS1 variants; 29 (56%) were female, 23 (44%) were male, and the median age was 72 years (65-78, 57-86). Only 30 (58%) of these participants had developed manifestations that were potentially related to SOCS1 insufficiency. Allergy and rheumatological manifestations were more common in participants from the UK Biobank than the ESID registry. Female predominance (21 [70%] of 30 participants were female and nine [30%] were male) was also found among symptomatic participants from the UK Biobank. Treatment with JAK inhibitors showed promising results in 12 (92%) of 13 participants in the ESID registry. INTERPRETATION SOCS1 insufficiency differs from other genetic autoimmune lymphoproliferative disorders by the presence of frequent atopic and rheumatological manifestations. Penetrance is incomplete and is higher in females than in males. JAK inhibition is a promising targeted therapy for patients with SOCS1 insufficiency. FUNDING German Research Foundation (DFG).
Collapse
Affiliation(s)
- Jerome Hadjadj
- Sorbonne University, Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France; University Paris Cité, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Anna Wolfers
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oleg Borisov
- Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Derek Hazard
- Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ronan Leahy
- Paediatric Immunology, Children's Health Ireland, Dublin, Ireland; University of Dublin, Trinity College, Dublin, Ireland
| | - Marie Jeanpierre
- University Paris Cité, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Belot
- CIRI, INSERM U1111, UMR5308, University of Lyon, Lyon, France; National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France; Hospices Civils de Lyon, Paediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital, Bron, France
| | - Shahrzad Bakhtiar
- Division of Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stephano Volpi
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genoa, Italy; UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Palmeri
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genoa, Italy; UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincent Barlogis
- Department of Pediatric Hematology, Immunology and Oncology, APHM, Hôpital de la Timone Enfants, CEReSS Research Unit EA 3279, Aix Marseille University, School of Medicine, Marseille, France
| | - Nathalie Aladjidi
- Pediatric Haemato-Immunology, INSERM CICP 1401, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE), Bordeaux University Hospital, Bordeaux, France
| | - Georg Ebetsberger-Dachs
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria
| | - Jerome Avouac
- Service de Rhumatologie, Hôpital Cochin, AP-HP Centre-Université Paris Cité, Paris, France
| | - Fabienne Charbit-Henrion
- Université Paris Cité, Department of Genomic Medicine of Rare Diseases, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Morgane Cheminant
- Université de Paris Cité/Necker-Enfants Malades University Hospital, AP-HP, Clinical Haematology, Paris, France
| | - Jean Donadieu
- Pediatric Hemato-Oncology Department, Trousseau Hospital, AP-HP, Paris, France
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University and University Hospital, Düsseldorf, Germany
| | | | - Julia Körholz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jacinta Bustamante
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - AP-HP, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jeremie Rosain
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - AP-HP, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Lisa Forbes Satter
- William T Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics Immunology Allergy and Retrovirology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ingrid Selmeryd
- Department of Infectious Diseases, Västmanland Hospital Västerås, Västerås, Sweden
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hanover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Benedicte Neven
- University Paris Cité, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France; Université Paris Cité, IHU-Imagine, Paris, France; Paediatric Immuno-Haematology and Rheumatology Department, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Frederic Rieux-Laucat
- University Paris Cité, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France; Université Paris Cité, IHU-Imagine, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Feng X, Yang C, Wang T, Zhang J, Zhou H, Ma B, Xu M, Deng G. IFN-τ Maintains Immune Tolerance by Promoting M2 Macrophage Polarization via Modulation of Bta-miR-30b-5p in Early Uterine Pregnancy in Dairy Cows. Cells 2025; 14:87. [PMID: 39851515 PMCID: PMC11764194 DOI: 10.3390/cells14020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Pregnancy failure in the first trimester of cows significantly impacts the efficiency of the dairy industry. As a type I interferon exclusively to ruminants, IFN-τ plays a key role in maternal recognition and immune tolerance of fetuses. Macrophages are the most common immune cells within the ruminant endometrium. Nevertheless, deeply analyzing the mechanisms of IFN-τ regulating macrophage polarization still needs further study. In this study, a notable decline of bta-miR-30b-5p expression via the increase of SOCS1 was observed in uterine tissues of pregnant cows. We then confirmed that the 3'UTR of SOCS1 was to be directly targeted by bta-miR-30b-5p. After that, we demonstrated that this obviously promoted the bovine macrophages (BoMac) polarized to M2 through enhancing SOCS1 expression with the treatment of IFN-τ. Furthermore, we found that SOCS1 restrained the expression of the key proteins p65 and p-P65 in the NF-κB pathway. Causing, the wide range of cross-species activities of IFN-τ, therefore we established a pregnant mouse model for the future confirmation of the above mechanism. The results verified that IFN-τ significantly improved this mechanism and maintained normal pregnancy status in mice, but miR-30b-5p significantly reduced the M2 polarization by inhibiting SOCS1, which activated the NF-κB signaling pathway, and then leading to the failure of embryo implantation. All these results indicated that IFN-τ can regulate immune tolerance during pregnancy by promoting M2 macrophage polarization through inhibiting bta-miR-30b-5p targeting SOCS1 to deactivate the NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.F.); (C.Y.); (T.W.); (J.Z.); (H.Z.); (B.M.)
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.F.); (C.Y.); (T.W.); (J.Z.); (H.Z.); (B.M.)
| |
Collapse
|
3
|
He W, Loganathan N, Tran A, Belsham DD. Npy transcription is regulated by noncanonical STAT3 signaling in hypothalamic neurons: Implication with lipotoxicity and obesity. Mol Cell Endocrinol 2024; 586:112179. [PMID: 38387703 DOI: 10.1016/j.mce.2024.112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Neuropeptide Y (Npy) is an abundant neuropeptide expressed in the central and peripheral nervous systems. NPY-secreting neurons in the hypothalamic arcuate nucleus regulate energy homeostasis, and Npy mRNA expression is regulated by peripheral nutrient and hormonal signals like leptin, interleukin-6 (IL-6), and fatty acids. This study demonstrates that IL-6, which phosphorylates tyrosine 705 (Y705) of STAT3, decreased Npy mRNA in arcuate immortalized hypothalamic neurons. In parallel, inhibitors of STAT3-Y705 phosphorylation, stattic and cucurbitacin I, robustly upregulated Npy mRNA. Chromatin-immunoprecipitation showed high baseline total STAT3 binding to multiple regulatory regions of the Npy gene, which are decreased by IL-6 exposure. The STAT3-Npy interaction was further examined in obesity-related pathologies. Notably, in four different hypothalamic neuronal models where palmitate potently stimulated Npy mRNA, Socs3, a specific STAT3 activity marker, was downregulated and was negatively correlated with Npy mRNA levels (R2 = 0.40, p < 0.001), suggesting that disrupted STAT3 signaling is involved in lipotoxicity-mediated dysregulation of Npy. Finally, human NPY SNPs that map to human obesity or body mass index were investigated for potential STAT3 binding sites. Although none of the SNPs were linked to direct STAT3 binding, analysis show that rs17149106 (-602 G > T) is located on an upstream enhancer element of NPY, where the variant is predicted to disrupt validated binding of KLF4, a known inhibitory cofactor of STAT3 and downstream effector of leptin signaling. Collectively, this study demonstrates that STAT3 signaling negatively regulates Npy transcription, and that disruption of this interaction may contribute to metabolic disorders.
Collapse
Affiliation(s)
- Wenyuan He
- Departments of Physiology, University of Toronto, Ontario, Canada
| | | | - Andy Tran
- Departments of Physiology, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Departments of Physiology, University of Toronto, Ontario, Canada; Departments of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Moysidou GS, Dara A. JAK Inhibition as a Potential Treatment Target in Systemic Lupus Erythematosus. Mediterr J Rheumatol 2024; 35:37-44. [PMID: 38756931 PMCID: PMC11094445 DOI: 10.31138/mjr.231123.jia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024] Open
Abstract
Janus kinase (JAK)/signal transducers and activators of transcription (STATs) are a group of molecules responsible for signal transduction of multiple cytokines and growth factors in different cell types, involved in the maintenance of immune tolerance. Thus, the dysregulation of this pathway plays a crucial role in the pathogenesis of multiple autoimmune, inflammatory, and allergic diseases and is an attractive treatment target. JAK inhibitors (JAKinibs) have been approved in the treatment of multiple autoimmune diseases including rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ankylosing spondylitis (SPA). In SLE, there is a plethora of ongoing trials evaluating their efficacy, with tofacitinib, baricitinib and deucravacitinib showing promising results, without major safety concerns. In this review, we will discuss the rationale of targeting JAKinibs in SLE and summarize the clinical data of efficacy and safety of JAKinibs in SLE patients.
Collapse
Affiliation(s)
- Georgia-Savina Moysidou
- National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece; Inflammation and Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Athanasia Dara
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Liu M, Hsu E, Du Y, Lee PY. Suppressor of Cytokine Signaling 1 Haploinsufficiency: A New Driver of Autoimmunity and Immunodysregulation. Rheum Dis Clin North Am 2023; 49:757-772. [PMID: 37821194 DOI: 10.1016/j.rdc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of cytokine signaling that inhibits the activation of Janus kinases. A human disease caused by SOCS1 haploinsufficiency was first identified in 2020. To date, 18 cases of SOCS1 haploinsufficiency have been described. These patients experience enhanced activation of leukocytes and multiorgan system immunodysregulation, with immune-mediated cytopenia as the most common feature. In this review, the authors provide an overview on the biology of SOCS1 and summarize their knowledge of SOCS1 haploinsufficiency including genetics and clinical manifestations. They discuss the available treatment experience and outline an approach for the evaluation of suspected cases.
Collapse
Affiliation(s)
- Meng Liu
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Evan Hsu
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yan Du
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
7
|
Wang R, Yi L, Zhou W, Wang W, Wang L, Xu L, Deng C, He M, Xie Y, Xu J, Chen Y, Gao T, Jin Q, Zhang L, Xie M. Targeted microRNA delivery by lipid nanoparticles and gas vesicle-assisted ultrasound cavitation to treat heart transplant rejection. Biomater Sci 2023; 11:6492-6503. [PMID: 36884313 DOI: 10.1039/d2bm02103j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Despite exquisite immune response modulation, the extensive application of microRNA therapy in treating heart transplant rejection is still impeded by poor stability and low target efficiency. Here we have developed a low-intensity pulsed ultrasound (LIPUS) cavitation-assisted genetic therapy after executing the heart transplantation (LIGHT) strategy, facilitating microRNA delivery to target tissues through the LIPUS cavitation of gas vesicles (GVs), a class of air-filled protein nanostructures. We prepared antagomir-155 encapsulated liposome nanoparticles to enhance the stability. Then the murine heterotopic transplantation model was established, and antagomir-155 was delivered to murine allografted hearts via the cavitation of GVs agitated by LIPUS, which reinforced the target efficiency while guaranteeing safety owing to the specific acoustic property of GVs. This LIGHT strategy significantly depleted miR-155, upregulating the suppressors of cytokine signaling 1 (SOCS1), leading to reparative polarization of macrophages, decrease of T lymphocytes and reduction of inflammatory factors. Thereby, rejection was attenuated and the allografted heart survival was markedly prolonged. The LIGHT strategy achieves targeted delivery of microRNA with minimal invasiveness and great efficiency, paving the way towards novel ultrasound cavitation-assisted strategies of targeted genetic therapy for heart transplantation rejection.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Jia Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
8
|
Tan PH, Ji J, Hsing CH, Tan R, Ji RR. Emerging Roles of Type-I Interferons in Neuroinflammation, Neurological Diseases, and Long-Haul COVID. Int J Mol Sci 2022; 23:ijms232214394. [PMID: 36430870 PMCID: PMC9696119 DOI: 10.3390/ijms232214394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines originally identified for their antiviral activity. IFN-α and IFN-β are both type I IFNs that have been used to treat neurological diseases such as multiple sclerosis. Microglia, astrocytes, as well as neurons in the central and peripheral nervous systems, including spinal cord neurons and dorsal root ganglion neurons, express type I IFN receptors (IFNARs). Type I IFNs play an active role in regulating cognition, aging, depression, and neurodegenerative diseases. Notably, by suppressing neuronal activity and synaptic transmission, IFN-α and IFN-β produced potent analgesia. In this article, we discuss the role of type I IFNs in cognition, neurodegenerative diseases, and pain with a focus on neuroinflammation and neuro-glial interactions and their effects on cognition, neurodegenerative diseases, and pain. The role of type I IFNs in long-haul COVID-associated neurological disorders is also discussed. Insights into type I IFN signaling in neurons and non-neuronal cells will improve our treatments of neurological disorders in various disease conditions.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, MA 02482, USA
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Radika Tan
- Kaohsiung American School, Kaohsiung 81354, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Tan PH, Ji J, Yeh CC, Ji RR. Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Front Immunol 2021; 12:783725. [PMID: 34804074 PMCID: PMC8602180 DOI: 10.3389/fimmu.2021.783725] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-β are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-β can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts, MA, United States
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Chun-Chang Yeh
- Department of Anesthesiology of Tri-Service General Hospital & National Defense Medical Center, Taipei City, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
11
|
Luo M, Liu M, Liu W, Cui X, Zhai S, Gu H, Wang H, Wu K, Zhang W, Li K, Xia Y. Inhibition of fibroblast growth factor-inducible 14 attenuates experimental tubulointerstitial fibrosis and profibrotic factor expression of proximal tubular epithelial cells. Inflamm Res 2021; 70:553-568. [PMID: 33755760 DOI: 10.1007/s00011-021-01455-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/21/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND AIM As a proinflammatory cytokine, tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in the progression of renal fibrosis by binding to its receptor, fibroblast growth factor-inducible 14 (Fn14). However, the effect of Fn14 inhibition on tubular epithelial cell-mediated tubulointerstitial fibrosis remains unclear. This study aimed to elucidate the role of TWEAK/Fn14 interaction in the development of experimental tubulointerstitial fibrosis as well as the protective effect of Fn14 knockdown on proximal tubular epithelial cells. METHODS A murine model of unilateral ureteral obstruction was constructed in both wild-type and Fn14-deficient BALB/c mice, followed by observation of the tubulointerstitial pathologies. RESULTS Fn14 deficiency ameliorated the pathological changes, including inflammatory cell infiltration and cell proliferation, accompanied by reduced production of profibrotic factors and extracellular matrix deposition. In vitro experiments showed that TWEAK dose-dependently enhanced the expression of collagen I, fibronectin, and α-smooth muscle actin in proximal tubular epithelial cells. Interestingly, TWEAK also upregulated the expression levels of Notch1/Jagged1. Fn14 knockdown and Notch1/Jagged1 inhibition also mitigated the effect of TWEAK on these cells. CONCLUSIONS In conclusion, TWEAK/Fn14 signals contributed to tubulointerstitial fibrosis by acting on proximal tubular epithelial cells. Fn14 inhibition might be a therapeutic strategy for protecting against renal interstitial fibrosis.
Collapse
Affiliation(s)
- Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Mengmeng Liu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiao Cui
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Siyue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wen Zhang
- College of Military Basic Education, Engineering University of PAP, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
12
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
13
|
Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N, Armstrong M, Ashrafian H, Cutcutache I, Ebetsberger-Dachs G, Elliott KS, Durieu I, Fabien N, Fusaro M, Heeg M, Schmitt Y, Bras M, Knight JC, Lega JC, Lesca G, Mathieu AL, Moreews M, Moreira B, Nosbaum A, Page M, Picard C, Ronan Leahy T, Rouvet I, Ryan E, Sanlaville D, Schwarz K, Skelton A, Viallard JF, Viel S, Villard M, Callebaut I, Picard C, Walzer T, Ehl S, Fischer A, Neven B, Belot A, Rieux-Laucat F. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun 2020; 11:5341. [PMID: 33087723 PMCID: PMC7578789 DOI: 10.1038/s41467-020-18925-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
Autoimmunity can occur when a checkpoint of self-tolerance fails. The study of familial autoimmune diseases can reveal pathophysiological mechanisms involved in more common autoimmune diseases. Here, by whole-exome/genome sequencing we identify heterozygous, autosomal-dominant, germline loss-of-function mutations in the SOCS1 gene in ten patients from five unrelated families with early onset autoimmune manifestations. The intracellular protein SOCS1 is known to downregulate cytokine signaling by inhibiting the JAK-STAT pathway. Accordingly, patient-derived lymphocytes exhibit increased STAT activation in vitro in response to interferon-γ, IL-2 and IL-4 that is reverted by the JAK1/JAK2 inhibitor ruxolitinib. This effect is associated with a series of in vitro and in vivo immune abnormalities consistent with lymphocyte hyperactivity. Hence, SOCS1 haploinsufficiency causes a dominantly inherited predisposition to early onset autoimmune diseases related to cytokine hypersensitivity of immune cells.
Collapse
Affiliation(s)
- Jérôme Hadjadj
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marie-Claude Stolzenberg
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Fabienne Mazerolles
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l'Enfant (CEREVANCE), CIC 1401, Inserm CICP, Bordeaux, France.,Pediatric Oncology Hematology Unit, University Hospital, place Amélie Raba Léon, CIC 1401, Inserm, CICP, Bordeaux, France
| | | | - Houman Ashrafian
- Experimental Therapeutics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Georg Ebetsberger-Dachs
- Department of Pediatrics, Kepler University Hospital and School of Medicine, Johannes Kepler University, Linz, Austria
| | | | - Isabelle Durieu
- Internal Medicine and Vascular Pathology Department, Adult Cystic Fibrosis Center, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,EA 7425 HESPER. Université de Lyon, Lyon, France
| | - Nicole Fabien
- Immunology laboratory; Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Fusaro
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yohan Schmitt
- Genomic Core Facility, INSERM UMR1163, Imagine Institute, Paris, France
| | - Marc Bras
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jean-Christophe Lega
- Department of Internal and Vascular Medicine, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France.,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France.,UMR 5558, Equipe Evaluation et Modélisation des Effets Thérapeutiques, Laboratoire de Biométrie et Biologie Evolutive, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Marion Moreews
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Baptiste Moreira
- Immunology Laboratory, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Audrey Nosbaum
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Allergy and Clinical Immunology department, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Matthew Page
- Translational Medicine, UCB Pharma, Braine-l'Alleud, Belgium
| | - Cécile Picard
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Hospices Civils de Lyon, UCBL Lyon 1 University, Lyon, France
| | - T Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Isabelle Rouvet
- Centre de biotechnologie cellulaire et Biothèque, Groupe Hospitalier Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Ethel Ryan
- Department of Paediatrics, University Hospital Galway, Co, Galway, Ireland
| | - Damien Sanlaville
- Service de Génétique, Hospices Civils de Lyon - GHE, and Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Klaus Schwarz
- Institute for Transfusion Medicin, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, 89081, Ulm, Germany
| | - Andrew Skelton
- Translational Medicine, UCB Pharma, Slough, United Kingdom
| | - Jean-Francois Viallard
- Département de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Universitaire Haut Lévêque, Université de Bordeaux, Pessac, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Service d'Immunologie Biologique, Groupement Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Imagine institute, laboratory of Iymphocyte activation and susceptibility to EBV, INSERM UMR 1163, 24 boulevard du Montparnasse, Paris, 75015, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alain Fischer
- Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France.,Collège de France, Paris, France
| | - Bénédicte Neven
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France.,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.,Paediatric Immuno-Haematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France. .,National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases (RAISE), Lyon, France. .,Hospices Civils de Lyon, Paediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital, Bron, France.
| | - Frédéric Rieux-Laucat
- Université de Paris, Imagine institute, laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 24 boulevard du Montparnasse, 75015, Paris, France. .,Université de Paris, IHU-Imagine, 24 boulevard du Montparnasse, Paris, 75015, France.
| |
Collapse
|
14
|
Su M, Zhang R, Liu N, Zhang J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. FISH & SHELLFISH IMMUNOLOGY 2020; 104:46-54. [PMID: 32474084 DOI: 10.1016/j.fsi.2020.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Salinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention. In the present study, the effects of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response were analyzed in renal masses of Scatophagus argus under different osmotic stresses in vitro. mRNA expression of pro-inflammatory cytokines (TNF-α, IL1-β and IL-6) and immune-regulatory related genes (GR and SOCS1) was measured over a short course (15 h). Comprehensive analysis reveals that transcript abundances of pro-inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 induced by LPS, alone or in the combination of cortisol, are tightly associated with osmoregulation under acute osmotic stress. Our results showed that osmotic challenge could significantly enhance mRNA expression levels of pro-inflammatory cytokines in renal masses in vitro. Based on our analysis, it can be inferred that cortisol suppresses the magnitude of renal inflammatory response and attenuates LPS-induced immune response through GR signaling in the face of challenging environmental conditions.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
15
|
Wang G, Yu J, Yang Y, Liu X, Zhao X, Guo X, Duan T, Lu C, Kang J. Whole-transcriptome sequencing uncovers core regulatory modules and gene signatures of human fetal growth restriction. Clin Transl Med 2020; 9:9. [PMID: 31993806 PMCID: PMC6987274 DOI: 10.1186/s40169-020-0259-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Fetal growth restriction (FGR) contributes the primary cause of perinatal mortality and morbidity with impacts on the long-term health. To determine the core gene expression network and gene signatures, which in combination with ultrasound confirmation will more effectively differentiate constitutionally normal small for gestational age and pathological FGR groups, we performed RNA sequencing for protein-coding genes, lncRNAs, and small RNAs in a case–control study of umbilical cord blood. Results Five pairs of FGR case and control umbilical cord blood samples were used for RNA sequencing and weighted gene co-expression network analysis (WGCNA). Results showed that 339 mRNAs, 295 lncRNAs, and 13 miRNAs were significantly differentially expressed between FGR cases and controls. Bioinformatics analysis indicated that these differentially expressed molecules were mainly involved in metabolism, neural, cardiac, and immune systems, and identified 18 WGCNA modules for FGR. Further quantitative verification was performed using umbilical cord blood and maternal peripheral blood from 12 pairs of FGR cases and controls. The logistic regression and receiver operating characteristic curve indicated that RP11_552M6.1, LINC01291, and Asgr1 in umbilical cord blood, while Sfrp2, miR-432-5p, and miR-1306-3p in maternal peripheral blood had potential significance for FGR. Conclusions We comprehensively profiled the whole-transcriptome landscape of human umbilical cord blood with FGR, constructed the core WGCNA modules, and delineated the critical gene signatures of FGR. These findings provide key insight into intrauterine perturbations and candidate signatures for FGR.
Collapse
Affiliation(s)
- Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jun Yu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqin Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaobo Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tao Duan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China. .,Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
16
|
Gu C, Zhao R, Zhang X, Gu Z, Zhou W, Wang Y, Guo J, Bao Y, Sun C, Dong C, Gao J. A meta-analysis of secondary osteoporosis in systemic lupus erythematosus: prevalence and risk factors. Arch Osteoporos 2019; 15:1. [PMID: 31802295 DOI: 10.1007/s11657-019-0667-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/05/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aimed to evaluate the prevalence and risk factors of secondary osteoporosis (OP) in patients with systemic lupus erythematosus (SLE) and provide a theoretical basis for clinical prevention and treatment of SLE. METHODS Take systematic review and meta-analysis of relevant studies. Data sources are CINAHL databases, PubMed, Embase, Wan Fang, Weipu, and CNKI databases. Eligibility criteria are cross-sectional or case-control studies which analyzed the prevalence and risk factors of OP in SLE. Two authors independently screened all studies; a third author verified and identify controversial studies. The quality of the included articles was evaluated. Stata 11 and Rev-Man 5.2 software were used for data processing. RESULTS Thirty-one articles were included, with a total sample size of 3089 SLE, including 529 OP cases and 2560 non-OP cases. Meta-analysis showed that the prevalence of OP among SLE was 16% (95% CI (0.12, 0.19)). The risk of OP in SLE cases compared with controls was significantly greater with OR of 2.03 (95% CI 1.33-3.10, P = 0.001). Age, disease duration, cumulative glucocorticoid dose, duration of glucocorticoid therapy, SLICC, and menopause had significant differences between two groups. No statistical differences of daily glucocorticoid dose, SLEDAI, and BMI were found between OP and non-OP cases. CONCLUSIONS Our study found a statistically significant increased risk of OP in SLE patients compared with controls. SLE patients should be actively screened for OP and its consequences. Larger longitudinal studies are needed to confirm this possible association. The prevalence of OP in SLE was 16%. Compared with controls, the risk of OP in SLE was 2.03. There were significant differences of age, disease duration, cumulative glucocorticoid dose, time of glucocorticoid, SLICC, and menopause, while daily glucocorticoid dose, SLEDAI, and BMI had no statistical differences between OP and non-OP cases.
Collapse
Affiliation(s)
- Chaoyu Gu
- Medical College, Nantong University, 19th Qixiu Road, Nantong, 226001, China
| | - Rui Zhao
- Department of Nursing, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Xiaomei Zhang
- Department of Nursing, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China.,Department of Rheumatology, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Wei Zhou
- Department of Nursing, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Yilin Wang
- Department of Nursing, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Jiaxin Guo
- Department of Nursing, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Yanfeng Bao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Chi Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China
| | - Chen Dong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China. .,Department of Rheumatology, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China. .,Center for Geriatrics Research, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China.
| | - Jianlin Gao
- Center for Geriatrics Research, Affiliated Hospital of Nantong University, 20th Xisi Road, Nantong, 226001, China.
| |
Collapse
|
17
|
Zhou Y, Li Y, Lu J, Hong X, Xu L. MicroRNA‑30a controls the instability of inducible CD4+ Tregs through SOCS1. Mol Med Rep 2019; 20:4303-4314. [PMID: 31545427 DOI: 10.3892/mmr.2019.10666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/05/2022] Open
Abstract
Inducible regulatory T cells (iTregs) are an important subset of Tregs and play a role in the maintenance of peripheral tolerance, and the occurrence of a number of diseases, including tumors and autoimmune diseases. However, the instability of iTregs is a major obstacle for their potential application in clinical trials. The underlying mechanism of iTreg instability remains largely unknown. In the present study, the expression level of microRNA (miRNA/miR)‑30a in murine iTregs was evaluated using reverse transcription‑quantitative PCR. miR‑30a mimics and a miR‑negative control (NC) were transiently transfected into iTregs using Nucleofector technology. The effects of miR‑30a on the suppressive function of murine iTregs in vitro and in vivo were investigated using MTT, adoptive cell transfer (ACT) and flow cytometry assays, as well as a murine model of lung cancer. In the present study, it was identified that the expression level of miR‑30a was lower in murine iTregs in vitro compared with natural (n)Tregs. Furthermore, compared with miR‑NC, miR‑30a mimics impaired the suppressive function of murine iTregs on murine CD4+ T cell proliferation in vitro, which was accompanied by the altered expression of cytotoxic T lymphocyte‑associated antigen 4 and glucocorticoid induced tumor necrosis factor receptor, as well as transforming growth factor‑β and interleukin‑10. It was also observed that, compared with miR‑NC, miR‑30a mimics abrogated the suppressive effects of murine iTregs on murine CD8+ T cell function in vivo, producing an effective antitumor effect in mice bearing 3LL lung cancer cells in the ACT assay. From a mechanistic point, the expression level of suppressor of cytokine signaling 1, a putative target of miR‑30a, was elevated, altering the activation of the Akt and STAT1 pathway in the miR‑30a mimic transfected group compared with the miR‑NC group, reducing the suppressive function of murine iTregs. The present study identified a role for miR‑30a in the instability of iTregs and provided a novel insight into the development of therapeutic strategies for promoting T‑cell immunity via the regulation of iTreg instability by targeting specific miRNAs.
Collapse
Affiliation(s)
- Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongju Li
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| | - Jia Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| | - Xiaowu Hong
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
18
|
Liao Z, Ye Z, Xue Z, Wu L, Ouyang Y, Yao C, Cui C, Xu N, Ma J, Hou G, Wang J, Meng Y, Yin Z, Liu Y, Qian J, Zhang C, Ding H, Guo Q, Qu B, Shen N. Identification of Renal Long Non-coding RNA RP11-2B6.2 as a Positive Regulator of Type I Interferon Signaling Pathway in Lupus Nephritis. Front Immunol 2019; 10:975. [PMID: 31130957 PMCID: PMC6509587 DOI: 10.3389/fimmu.2019.00975] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE). Type I interferon (IFN-I) is associated with the pathogenesis of LN. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of SLE, however, the roles of lncRNAs in LN are still poorly understood. Here, we identified and investigated the function of LN-associated lncRNA RP11-2B6.2 in regulating IFN-I signaling pathway. Methods: RNA sequencing was used to analyze the expression of lncRNAs in kidney biopsies from LN patients and controls. Antisense oligonucleotides and CRISPRi system or overexpression plasmids and CRISPRa system were used to perform loss or gain of function experiments. In situ hybridization, imaging flow cytometry, dual-luciferase reporter assay, and ATAC sequencing were used to study the functions of lncRNA RP11-2B6.2. RT-qPCR, ELISA, and western blotting were done to detect RNA and protein levels of specific genes. Results: Elevated lncRNA RP11-2B6.2 was observed in kidney biopsies from LN patients and positively correlated with disease activity and IFN scores. Knockdown of lncRNA RP11-2B6.2 in renal cells inhibited the expression of IFN stimulated genes (ISGs), while overexpression of lncRNA RP11-2B6.2 enhanced ISG expression. Knockdown of LncRNA RP11-2B6.2 inhibited the phosphorylation of JAK1, TYK2, and STAT1 in IFN-I pathway, while promoted the chromatin accessibility and the transcription of SOCS1. Conclusion: The expression of lncRNAs is abnormal in the kidney of LN. LncRNA RP11-2B6.2 is a novel positive regulator of IFN-I pathway through epigenetic inhibition of SOCS1, which provides a new therapeutic target to alleviate over-activated IFN-I signaling in LN.
Collapse
Affiliation(s)
- Zhuojun Liao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingling Wu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Ouyang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaojie Cui
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Xu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiehua Wang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Meng
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Ya Liu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai, China.,Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
19
|
Guan SY, Liu LN, Mao YM, Zhao CN, Wu Q, Dan YL, Bellua Sam N, Pan HF. Association between Interleukin 35 Gene Single Nucleotide Polymorphisms and Systemic Lupus Erythematosus in a Chinese Han Population. Biomolecules 2019; 9:biom9040157. [PMID: 31013577 PMCID: PMC6523873 DOI: 10.3390/biom9040157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/13/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-35 (IL-35) exerts crucial roles in the pathogenesis and development of systemic lupus erythematosus (SLE), in this study we aim to explore the associations between IL-35 gene polymorphisms and the susceptibility, clinical features and plasma IL-35 levels of SLE patients, respectively. 490 SLE patients and 489 healthy controls were recruited in our study. The correlations between the polymorphisms of seven SNPs of IL-35 encoding gene and the susceptibility, main clinical manifestations of SLE were evaluated, respectively. Plasma IL-35 levels were assessed in 76 SLE patients, and the associations between plasma IL-35 levels and the polymorphisms of genotyped SNPs were explored. There were significant associations between the polymorphisms of rs4740 and the occurrence of renal disorder, hematological disorder in SLE patients, respectively (p = 0.001; p = 0.001). In addition, there were no significant associations observed between the genotype frequencies of genotyped SNPs and the risk of SLE, plasma IL-35 levels, respectively. The polymorphism of rs4740 of IL-35 encoding gene is associated with the occurrence of renal disorder and hematological disorder of SLE patients.
Collapse
Affiliation(s)
- Shi-Yang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Yi-Lin Dan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Napoleon Bellua Sam
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei 230032, China.
| |
Collapse
|
20
|
Kong J, Li L, Lu Z, Song J, Yan J, Yang J, Gu Z, Da Z. MicroRNA-155 Suppresses Mesangial Cell Proliferation and TGF-β1 Production via Inhibiting CXCR5-ERK Signaling Pathway in Lupus Nephritis. Inflammation 2019; 42:255-263. [PMID: 30209639 PMCID: PMC6394596 DOI: 10.1007/s10753-018-0889-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increasing evidence shows miR-155 plays an important role in regulating inflammatory processes in systemic lupus erythematosus (SLE), especially in lupus nephritis (LN). Because the chemokine CXCL13 is implicated in the pathogenesis of LN, here we examined whether miR-155 can modulate the activity of CXCL13 or its receptor CXCR5. We determined the expression of CXCL13 in normal and MRL/lpr mice and found elevated levels of CXCL13 in the kidneys of MRL/lpr mice compared with normal kidneys. Besides, CXCL13 expression was mainly detected in the glomerulus, specifically to mesangial areas. We then transfected a miR-155 mimic in human renal mesangial cells (HRMCs) to overexpress miR-155 and detected decreased protein levels of CXCR5 by western blot analysis. Transfection of the miR-155 mimic into CXCL13-treated HRMCs resulted in a significantly reduced proliferation rate of HRMCs as measured by the cell-counting assay and flow cytometry. Moreover, increased intracellular miR-155 also led to decreased phosphorylation of ERK and TGF-β1 production. Together, these results revealed that miR-155 may play a role in the pathogenesis of LN.
Collapse
Affiliation(s)
- Jie Kong
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Liuxia Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhimin Lu
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiamin Song
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jiaxin Yan
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20, XiSi Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
21
|
Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs 2018; 28:85-92. [PMID: 30462559 DOI: 10.1080/13543784.2019.1551358] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, SAR China
| |
Collapse
|
22
|
Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:369-393. [PMID: 30332560 DOI: 10.1146/annurev-pathol-020117-043952] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| |
Collapse
|
23
|
Wang S, Wang L, Wu C, Sun S, Pan JH. E2F2 directly regulates the STAT1 and PI3K/AKT/NF-κB pathways to exacerbate the inflammatory phenotype in rheumatoid arthritis synovial fibroblasts and mouse embryonic fibroblasts. Arthritis Res Ther 2018; 20:225. [PMID: 30286793 PMCID: PMC6235203 DOI: 10.1186/s13075-018-1713-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/04/2018] [Indexed: 11/30/2022] Open
Abstract
Background Expression of E2F transcription factor 2 (E2F2), a transcription factor related to the cell cycle, is abnormally high in rheumatoid arthritis synovial fibroblasts (RASFs). Deregulated expression of E2F2 leads to abnormal production of proinflammatory cytokines, such as interleukin (IL)-1α, IL-1β, and tumor necrosis factor (TNF)-α in RASFs. However, the underlying mechanism by which E2F2 regulates expression of IL-1α, IL-1β, and TNF-α has not been fully elucidated. This study aimed to elucidate this mechanism and confirm the pathological roles of E2F2 in rheumatoid arthritis (RA). Methods E2f2 knockout (KO) and wild-type (WT) mice were injected with collagen to induce RA. Cytokine production was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Western blot and qRT-PCR were performed to evaluate the effect of E2F2 on signaling pathway activity. Chromatin immunoprecipitation (ChIP)-PCR and luciferase assays were used to detect the transcriptional activity of target genes of E2F2. Nuclear translocation of STAT1 and p65 were assayed by Western blot, co-immunoprecipitation (co-IP), and immunofluorescence experiments. Results The occurrence and severity of collagen-induced arthritis were decreased in E2f2-KO mice compared with WT mice. The expression of IL-1α, IL-1β, and TNF-α was also suppressed in mouse embryonic fibroblasts (MEFs) from E2f2-KO mice and RASFs with E2F2 knocked down. Mechanistically, we found that E2F2 can upregulate the expression of STAT1 and MyD88 through direct binding to their promoters, facilitate the formation of STAT1/MyD88 complexes, and consequently activate AKT. However, silencing STAT1/MyD88 or inactivating AKT significantly attenuated the induction of IL-1α, IL-1β, and TNF-α caused by the introduction of E2F2. Conclusions This study confirms the pathological role of E2F2 in RA and found that the E2F2-STAT1/MyD88-Akt axis is closely related with the inflammatory phenotype in RASFs.
Collapse
Affiliation(s)
- Shiguan Wang
- Medical and Life Science College, University of Jinan, Jinan, 250062, Shandong, China.,Shandong Medicinal Biotechnology Centre, Jingshi Road, Jinan, 250000, Shandong, China.,Key Lab for Biotechnology Drugs of Ministry of Health, Jinan, 250000, Shandong, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Centre, Jingshi Road, Jinan, 250000, Shandong, China.,Key Lab for Biotechnology Drugs of Ministry of Health, Jinan, 250000, Shandong, China.,Key Lab for Rare & Uncommon Diseases, Jinan, 250000, Shandong, China
| | - Changshun Wu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250000, Shandong, China
| | - Shui Sun
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250000, Shandong, China
| | - Ji-Hong Pan
- Shandong Medicinal Biotechnology Centre, Jingshi Road, Jinan, 250000, Shandong, China. .,Key Lab for Biotechnology Drugs of Ministry of Health, Jinan, 250000, Shandong, China. .,Key Lab for Rare & Uncommon Diseases, Jinan, 250000, Shandong, China.
| |
Collapse
|
24
|
Bai J, Wu L, Chen X, Wang L, Li Q, Zhang Y, Wu J, Cai G, Chen X. Suppressor of Cytokine Signaling-1/STAT1 Regulates Renal Inflammation in Mesangial Proliferative Glomerulonephritis Models. Front Immunol 2018; 9:1982. [PMID: 30214448 PMCID: PMC6125399 DOI: 10.3389/fimmu.2018.01982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mesangial proliferative glomerulonephritis (MsGN) is a significant global threat to public health. Inflammation plays a crucial role in MsGN; however, the underlying mechanism remains unknown. Herein, we demonstrate that suppression of the cytokine signaling-1 (SOCS1)/signal transducer and activator of transcription 1 (STAT1) signaling pathway is associated with renal inflammation and renal injury in MsGN. Using MsGN rat (Thy1.1 GN) and mouse (Habu GN) models, renal SOCS1/STAT1 was determined to be associated with CD4+ T cell infiltration and related cytokines. In vitro, SOCS1 overexpression repressed IFN-γ-induced MHC class II and cytokine levels and STAT1 phosphorylation in mesangial cells. SOCS1 and STAT1 inhibitors significantly inhibited IFN-γ-induced CIITA promoter activity and MHC class II expression. In conclusion, our study emphasizes the pivotal role of the SOCS1/STAT1 axis in the regulation of inflammation in MsGN.
Collapse
Affiliation(s)
- Jiuxu Bai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiaoniao Chen
- Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, Ophthalmology and Visual Science Key Lab of PLA, Chinese PLA General Hospital, Beijing, China
| | - Qinggang Li
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Jie Wu
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Guangyan Cai
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Department of Nephrology, National Clinical Research Center for Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China
| |
Collapse
|