1
|
Ouyang J, Guo S, Hu Z, Cao T, Mou J, Gu X, Huang C, Liu J. Recombinant protein Ag85B-Rv2660c-MPT70 promotes quality of BCG-induced immune response against Mycobacterium tuberculosis H37Ra. Front Immunol 2025; 16:1430808. [PMID: 40181958 PMCID: PMC11965932 DOI: 10.3389/fimmu.2025.1430808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Bacillus Calmette-Guérin (BCG), the only licensed vaccine against Mycobacterium tuberculosis (Mtb) infection, has been extensively used worldwide for over 100 years, but the epidemic of tuberculosis (TB) remains a major challenge to human health and well-being. The quest for a more effective vaccination strategy against the Mtb infection continues. Boosting the protective immunity induced by BCG with recombinant protein is a feasible approach to improve the efficacy of BCG, due to the proven safety and effectiveness of recombinant proteins as vaccination regimes against a variety of infectious diseases. While being shown to be promising in clinical trials in preventing Mtb infection, data suggest this strategy requires further improvement. Methods In this study, we developed a novel fusion of proteins derived from major antigenic components of Mtb, including Ag85B, Rv2660c, and MPT70 (ARM), and assessed its antigenicity and ability to boost BCG efficacy in a murine model. Results The results demonstrated that the ARM immunization induced antigen-specific T and B cell responses and reduced the Mtb H37Ra burdens in the lungs and spleen. Mice that were primed with BCG and boosted with the ARM mounted a Th1-type immune response, characterized by an increased proportion of multi-functional ARM- and Mtb lysate-specific CD4+ T cells that produced IFN-γ, TNF-α, and IL-2 compared to BCG alone, and reduced the Mtb burden without the development of severe lung pathological inflammation. Discussion The results of our study demonstrate that the ARM boost improves the quality of the BCG-induced immune response, increases its potency of pathogen reduction, and offers an additional option for enhancing the efficacy of BCG vaccination.
Collapse
Affiliation(s)
- Jiangshan Ouyang
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Shaohua Guo
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Zhiming Hu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Mou
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Xinxia Gu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Chunxu Huang
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
| | - Jie Liu
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, West
China School of Medicine, Sichuan University, Chengdu, China
- Department of Healthcare Intelligence, University of North America, Fairfax, VA, United States
| |
Collapse
|
2
|
Schlich M, D'Apice L, Lai F, Sinico C, Valenti D, Catalano F, Marotta R, Decuzzi P, Italiani P, Maria Fadda A. Boosting antigen-specific T cell activation with lipid-stabilized protein nanoaggregates. Int J Pharm 2024; 661:124404. [PMID: 38945464 DOI: 10.1016/j.ijpharm.2024.124404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Vaccines based on protein antigens have numerous advantages over inactivated pathogens, including easier manufacturing and improved safety. However, purified antigens are weakly immunogenic, as they lack the spatial organization and the associated 'danger signals' of the pathogen. Formulating vaccines as nanoparticles enhances the recognition by antigen presenting cells, boosting the cell-mediated immune response. This study describes a nano-precipitation method to obtain stable protein nanoaggregates with uniform size distribution without using covalent cross-linkers. Nanoaggregates were formed via microfluidic mixing of ovalbumin (OVA) and lipids in the presence of high methanol concentrations. A purification protocol was set up to separate the nanoaggregates from OVA and liposomes, obtained as byproducts of the mixing. The nanoaggregates were characterized in terms of morphology, ζ-potential and protein content, and their interaction with immune cells was assessed in vitro. Antigen-specific T cell activation was over 6-fold higher for nanoaggregates compared to OVA, due in part to the enhanced uptake by immune cells. Lastly, a two-dose immunization with nanoaggregates in mice induced a significant increase in OVA-specific CD8+ T splenocytes compared to soluble OVA. Overall, this work presents for the first time the microfluidic production of lipid-stabilized protein nanoaggregates and provides a proof-of-concept of their potential for vaccination.
Collapse
Affiliation(s)
- Michele Schlich
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy; Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, 16163 Genoa Italy.
| | - Luciana D'Apice
- National Research Council (CNR) - Institute of Biochemistry and Cell Biology (IBBC), 80131 Naples Italy
| | - Francesco Lai
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Chiara Sinico
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Donatella Valenti
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Federico Catalano
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Paola Italiani
- National Research Council (CNR) - Institute of Biochemistry and Cell Biology (IBBC), 80131 Naples Italy
| | - Anna Maria Fadda
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy.
| |
Collapse
|
3
|
Yang Y, Chen YZ, Xia T. Optimizing antigen selection for the development of tuberculosis vaccines. CELL INSIGHT 2024; 3:100163. [PMID: 38572176 PMCID: PMC10987857 DOI: 10.1016/j.cellin.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) remains a prevalent global infectious disease caused by genetically closely related tubercle bacilli in Mycobacterium tuberculosis complex (MTBC). For a century, the Bacillus Calmette-Guérin (BCG) vaccine has been the primary preventive measure against TB. While it effectively protects against extrapulmonary forms of pediatric TB, it lacks consistent efficacy in providing protection against pulmonary TB in adults. Consequently, the exploration and development of novel TB vaccines, capable of providing broad protection to populations, have consistently constituted a prominent area of interest in medical research. This article presents a concise overview of the novel TB vaccines currently undergoing clinical trials, discussing their classification, protective efficacy, immunogenicity, advantages, and limitations. In vaccine development, the careful selection of antigens that can induce strong and diverse specific immune responses is essential. Therefore, we have summarized the molecular characteristics, biological function, immunogenicity, and relevant studies associated with the chosen antigens for TB vaccines. These insights gained from vaccines and immunogenic proteins will inform the development of novel mycobacterial vaccines, particularly mRNA vaccines, for effective TB control.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi-Zhen Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| |
Collapse
|
4
|
Luan X, Fan X, Li G, Li M, Li N, Yan Y, Zhao X, Liu H, Wan K. Exploring the immunogenicity of Rv2201-519: A T-cell epitope-based antigen derived from Mycobacterium tuberculosis AsnB with implications for tuberculosis infection detection and vaccine development. Int Immunopharmacol 2024; 129:111542. [PMID: 38342063 DOI: 10.1016/j.intimp.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.
Collapse
Affiliation(s)
- Xiuli Luan
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101100, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xueting Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Mchao Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Na Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhan Yan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuqin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
5
|
Singh R, Kundu P, Bhattacharje G, Das AK. Mycobacterium tuberculosis low molecular weight T-cell antigen Mtb8.4 has heme-binding and fiber-forming properties. FEBS Lett 2022; 596:2678-2695. [PMID: 35795993 DOI: 10.1002/1873-3468.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
Mtb8.4, a secretory T-cell antigen of Mycobacterium tuberculosis, is important for providing an antigen-specific immune response. In this study, we showed Mtb8.4 to have both heme-binding and fibril-forming properties, using experimental and in silico methods. High absorbance at 410 nm and interaction with hemin-agarose demonstrated its heme-binding nature. Titration of Mtb8.4 with heme resulted in 1:1 stoichiometry. The heme-binding pocket in Mtb8.4 was identified by molecular modeling, and binding residues were predicted using molecular docking. The molecular dynamics simulations of apo- and heme-bound Mtb8.4 confirmed that the heme group forms a stable complex. Transmission electron microscopy analyses and dye-binding assays showed that Mtb8.4 forms fibers. Computational studies predicted that the C-terminal sequence (93 AAQYIGLVESV103 ) is important for forming fibers. In silico analyses further anticipated the probable epitope (82 AMAAQLQAV90 ) of Mtb8.4. The fiber-forming properties of Mtb8.4 could be advantageous from a vaccine perspective for aggregate/fibril-based vaccine delivery or it might influence the epitope presentation of Mtb8.4.
Collapse
Affiliation(s)
- Rashika Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Prasun Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
6
|
Luan X, Fan X, Wang R, Deng Y, Chen Z, Li N, Yan Y, Li X, Liu H, Li G, Wan K. High Immunogenicity of a T-Cell Epitope-Rich Recombinant Protein Rv1566c-444 From Mycobacterium tuberculosis in Immunized BALB/c Mice, Despite Its Low Diagnostic Sensitivity. Front Immunol 2022; 13:824415. [PMID: 35265079 PMCID: PMC8899609 DOI: 10.3389/fimmu.2022.824415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of immunodominant antigens is of great significance for the development of new especially sensitive diagnostic reagents and effective vaccines in controlling tuberculosis (TB). In the present study, we targeted the T-Cell epitope-rich fragment (nucleotide position 109-552) of Rv1566c from Mycobacterium tuberculosis (MTB) and got a recombinant protein Rv1566c-444 and the full-length protein Rv1566c with Escherichia coli expression system, then compared their performances for TB diagnosis and immunogenicity in a mouse model. The results showed that Rv1566c-444 had similar sensitivity with Rv1566c (44.44% Vs 30.56%) but lower sensitivity than ESAT-6&CFP-10&Rv3615c (44.4% Vs. 94.4%) contained in a commercial kit for distinguishing TB patients from healthy donors. In immunized BALB/c mice, Rv1566c-444 elicited stronger T-helper 1 (Th1) cellular immune response over Rv1566c with higher levels of Th1 cytokine IFN-γ and IFN-γ/IL-4 expression ratio by ELISA; more importantly, with a higher proliferation of CD4+ T cells and a higher proportion of CD4+ TNF-α+ T cells with flow cytometry. Rv1566c-444 also induced a higher level of IL-6 by ELISA and a higher proportion of Rv1566c-444-specific CD8+ T cells and a lower proportion of CD8+ IL-4+ T cells by flow cytometry compared with the Rv1566c group. Moreover, the Rv1566c-444 group showed a high IgG secretion level and the same type of CD4+ Th cell immune response (both IgG1/IgG2a >1) as its parental protein group. Our results showed the potential of the recombinant protein Rv1566c-444 enriched with T-Cell epitopes from Rv1566c as a host T cell response measuring biomarker for TB diagnosis and support further evaluation of Rv1566c-444 as vaccine antigen against MTB challenge in animal models in the form of protein mixture or fusion protein.
Collapse
Affiliation(s)
- Xiuli Luan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueting Fan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruihuan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yunli Deng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Community Health Management Service Center, Longgang District Peoples Hospital of Shenzhen, Shenzhen, China
| | - Zixin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Infection Control, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Na Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhan Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyan Li
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Intranasal vaccination with protein bodies elicit strong protection against Streptococcus pneumoniae colonization. Vaccine 2021; 39:6920-6929. [PMID: 34696934 DOI: 10.1016/j.vaccine.2021.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Protein bodies (PBs) are particles consisting of insoluble, aggregated proteins with potential as a vaccine formulation. PBs can contain high concentrations of antigen, are stable and relatively resistant to proteases, release antigen slowly and are cost-effective to manufacture. Yet, the capacity of PBs to provoke immune responses and protection in the upper respiratory tract, a major entry route of respiratory pathogens, is largely unknown. In this study, we vaccinated mice intranasally with PBs comprising antigens from Streptococcus pneumoniae and evaluated the level of protection against nasopharyngeal colonization. PBs composed of the α-helical domain of pneumococcal surface protein A (PspAα) provided superior protection against colonization with S. pneumoniae compared to soluble PspAα. Immunization with soluble protein or PBs induced differences in antibody binding to pneumococci as well as a highly distinct antigen-specific nasal cytokine profile upon in vivo stimulation with inactivated S. pneumoniae. Moreover, immunization with PBs composed of conserved putative pneumococcal antigens reduced colonization by S. pneumoniae in mice, both as a single- and as a multi-antigen formulation. In conclusion, PBs represent a vaccine formulation that elicits strong mucosal immune responses and protection. The versatility of this platform offers opportunities for development of next-generation vaccine formulations.
Collapse
|
8
|
Russell BL, Gildenhuys S. Bluetongue virus viral protein 7 stability in the presence of glycerol and sodium chloride. Clin Exp Vaccine Res 2020; 9:108-118. [PMID: 32864367 PMCID: PMC7445327 DOI: 10.7774/cevr.2020.9.2.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose The Orbivirus Bluetongue virus (BTV) is an economically significant disease that affects mainly wild and domestic ruminants. BTV is most often seen symptomatically in sheep, but is easily carried by goats, cattle, and wild ruminants. To date there are several problems with the vaccines currently available for BTV, and one of the most promising candidates to increase vaccine efficacy is a protein-based vaccine, for which viral protein 7 (VP7) is a great candidate to be included in it. In order to further these studies, the stability of BTV VP7 in common vaccine additives needs to be investigated. Materials and Methods Recombinant BTV VP7 was expressed in a bacterial cell system and purified before being analysed using spectroscopic techniques including far-ultraviolet (UV) circular dichroism and intrinsic tryptophan fluorescence. BTV was analysed in a number of different buffer conditions. Results We report here that BTV VP7 maintains its native secondary structure until at least 52℃ and native-like tertiary structure to at least 80℃. Far-UV circular dichroism and intrinsic tryptophan fluorescence emission spectra indicate significant secondary and tertiary structure remaining even at 90℃, respectively. Six M guanidinium chloride is able to unfold BTV VP7 while 8 M urea could not. Conclusion Twenty percent glycerol and 300 mM sodium chloride appear to have a protective effect on BTV VP7's structure, as significantly more structure is seen at 90℃ when compared to BTV VP7 without the addition of these chemicals. Both glycerol and sodium chloride are common vaccine additives.
Collapse
Affiliation(s)
- Bonnie Leigh Russell
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Samantha Gildenhuys
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| |
Collapse
|
9
|
Lanza JS, Vucen S, Flynn O, Donadei A, Cojean S, Loiseau PM, Fernandes APSM, Frézard F, Moore AC. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization. Int J Pharm 2020; 586:119390. [PMID: 32540349 DOI: 10.1016/j.ijpharm.2020.119390] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Re-emergence and geographic expansion of leishmaniasis is accelerating efforts to develop a safe and effective Leshmania vaccine. Vaccines using Leishmania recombinant antigens, such as LiHyp1, which is mostly present in the amastigote parasite form, are being developed as a next generation to crude killed parasite-based vaccines. The main objective of this work was to develop a LiHyp1-based vaccine and determine if it can induce protective immunity in BALB/c mice when administered using a dissolvable microneedle (DMN) patch by the skin route. The LiHyp1 antigen was incorporated into cationic liposomes (CL), with or without the TLR9 agonist, CpG. The LiHyp1-liposomal vaccines were characterized with respect to size, protein encapsulation rates and retention of their physical characteristics after incorporation into the DMN patch. DMN mechanical strength and skin penetration ability were tested. A vaccine composed of LiHyp1, CpG and liposomes and subcutaneously injected or a vaccine containing antigen and CpG in DMN patches, without liposomes, induced high antibody responses and significant levels of protection against L. donovani parasite infection. This study progresses the development of an efficacious leishmania vaccine by detailing promising vaccine formulations and skin delivery technologies and it addresses protective efficacy of a liposome-based dissolvable microneedle patch vaccine system.
Collapse
Affiliation(s)
- Juliane S Lanza
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Olivia Flynn
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Agnese Donadei
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sandrine Cojean
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Philippe M Loiseau
- Antiparasite Chemotherapy, UMR 8076 CNRS BioCIS, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Ana Paula S M Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne C Moore
- School of Pharmacy, University College Cork, Cork, Ireland; School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Rahman N, Islam MM, Unzai S, Miura S, Kuroda Y. Nanometer-Sized Aggregates Generated Using Short Solubility Controlling Peptide Tags Do Increase the In Vivo Immunogenicity of a Nonimmunogenic Protein. Mol Pharm 2020; 17:1629-1637. [DOI: 10.1021/acs.molpharmaceut.0c00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nafsoon Rahman
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Mohammad Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Shiho Miura
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Intravesical Mycobacterium brumae triggers both local and systemic immunotherapeutic responses against bladder cancer in mice. Sci Rep 2018; 8:15102. [PMID: 30305693 PMCID: PMC6180069 DOI: 10.1038/s41598-018-33253-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
The standard treatment for high-risk non-muscle invasive bladder cancer (BC) is the intravesical administration of live Mycobacterium bovis BCG. Previous studies suggest improving this therapy by implementing non-pathogenic mycobacteria, such as Mycobacterium brumae, and/or different vehicles for mycobacteria delivery, such as an olive oil (OO)-in-water emulsion. While it has been established that BCG treatment activates the immune system, the immune effects of altering the mycobacterium and/or the preparation remain unknown. In an orthotopic murine BC model, local immune responses were assessed by measuring immune cells into the bladder and macromolecules in the urine by flow cytometry and multiplexing, respectively. Systemic immune responses were analyzed by quantifying sera anti-mycobacteria antibody levels and recall responses of ex vivo splenocytes cultured with mycobacteria antigens. In both BCG- and M. brumae-treated mice, T, NK, and NKT cell infiltration in the bladder was significantly increased. Notably, T cell infiltration was enhanced in OO-in-water emulsified mycobacteria-treated mice, and urine IL-6 and KC concentrations were elevated. Furthermore, mycobacteria treatment augmented IgG antibody production and splenocyte proliferation, especially in mice receiving OO-in-water emulsified mycobacteria. Our data demonstrate that intravesical mycobacterial treatment triggers local and systemic immune responses, which are most significant when OO-in-water emulsified mycobacteria are used.
Collapse
|