1
|
Yoon J, Kim D, Jeong NH, Choi YA, Kwon TK, Lee S, Khang D, Kim SH. Protectin D1, an omega-3-derived lipid mediator, resolves mast cell-driven allergic inflammation via FcεRⅠ signaling. Biomed Pharmacother 2025; 187:118060. [PMID: 40253829 DOI: 10.1016/j.biopha.2025.118060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Protectin D1 (PD1) derived from docosahexaenoic acid (DHA) has shown promise in resolving inflammation. Mast cells are critical drivers of allergic inflammation, releasing inflammatory mediators such as histamine and pro-inflammatory cytokines. This study assesses the effectiveness of PD1 in counteracting mast cell-mediated allergic inflammation. In vivo, two well-established mouse models were employed: IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA). The oral administration of PD1 markedly suppressed PCA reactions, including ear swelling, plasma extravasation of Evans blue and mast cell degranulation. In the ASA model, oral PD1 administration dose-dependently alleviated hypothermia and reduced elevated serum levels of IgE, histamine, and IL-4. Mechanistic insights were gained through studies in the RBL-2H3 and primary mast cells derived from mouse bone marrow, where PD1 inhibited IgE-mediated degranulation and decreased intracellular calcium influx by blocking FcεRⅠ signaling pathways involving Lyn, Fyn, and Syk kinases. Additionally, PD1 suppressed pro-inflammatory cytokine production by inhibiting the activity of critical transcription factor; nuclear factor-κB. These findings suggest that PD1, a bioactive lipid derived from DHA, is a very promising therapeutic candidate for mast cell-derived allergic inflammation.
Collapse
Affiliation(s)
- Jieun Yoon
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Daheen Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Hee Jeong
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Ae Choi
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Soyoung Lee
- Department of Innovative Pharmaceutical Sciences, Advanced Institute of Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Dongwoo Khang
- Department of Gachon Advanced Institute for Health Science & Technology (GAIHST), Lee Gil Ya Cancer and Diabetes Institute, and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea.
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
2
|
Chiba N, Ohnishi T, Matsuguchi T. Hypoxia-Inducible Factor 1 Alpha Potentiates Lipopolysaccharide-Induced Expression of IL-13 and IL-33 in Mast Cells Under Hypoxia. Microbiol Immunol 2025; 69:247-255. [PMID: 39945318 DOI: 10.1111/1348-0421.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 04/08/2025]
Abstract
Lipopolysaccharide (LPS) is an exacerbating factor for allergic airway inflammation at least partly due to the activation of mast cells (MCs). LPS stimulates MCs to express both pro-inflammatory and type 2 cytokines, among which interleukin (IL)-13 is essential for the generation of allergic diseases. LPS also induces the expression of "alarmins" such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) from various cell types including epithelial cells, and increased serum IL-33 levels were reported to correlate with disease severity of asthma. MCs reside in peripheral tissues where the oxygen concentration is significantly lower than that in the air and further decreased by inflammation and bronchoconstriction in asthma. However, the effects of hypoxia on LPS-induced cytokine expression in MCs have not been fully elucidated. Here we show that LPS induces Il4, Il6, Il13, Il33, Tnf, and Tslp mRNAs in MCs. Notably, hypoxia robustly enhanced expressions of Il13 and Il33, but not the other cytokines in LPS-stimulated MCs. We also found that this promotive effect is dependent on the presence of hypoxia-inducible factor (HIF) 1α protein. Our study will provide new insight on the role of MCs in the LPS-associated pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
3
|
de Buhr N, Martens A, Meurer M, Bonilla MC, Söbbeler F, Twele L, Neudeck S, Wendt M, Beineke A, Kästner S, von Köckritz-Blickwede M. In vivo oxygen measurement in cerebrospinal fluid of pigs to determine physiologic and pathophysiologic oxygen values during CNS infections. BMC Neurosci 2021; 22:45. [PMID: 34182939 PMCID: PMC8240281 DOI: 10.1186/s12868-021-00648-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
During infection and inflammation, a reduced oxygen level clearly affects cellular functions. Oxygen levels during CNS infections are unknown. Here we established and evaluated an in vivo measurement system to characterize the oxygen level in parallel with bacterial numbers (CFU/mL), the cell number and pH level inside the CSF of healthy compared to Streptococcus suis-infected pigs. The animals were anesthetized over a seven-hour period with isoflurane in air/oxygen at physiologic arterial partial pressure of oxygen. Oxygen levels in CSF of anesthetized pigs were compared to euthanized pigs. The detected partial pressure of oxygen in the CSF remained constant in a range of 47-63 mmHg, independent of the infection status (bacterial or cell number). In contrast, the pH value showed a slight drop during infection, which correlated with cell and bacterial number in CSF. We present physiologic oxygen and pH values in CSF during the onset of bacterial meningitis.
Collapse
Affiliation(s)
- Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Alexander Martens
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marta C Bonilla
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franz Söbbeler
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lara Twele
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stephan Neudeck
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Kim MJ, Choi YA, Lee S, Choi JK, Kim YY, Kim EN, Jeong GS, Shin TY, Jang YH, Kim SH. Prunus serrulata var. spontanea inhibits mast cell activation and mast cell-mediated anaphylaxis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112484. [PMID: 31843576 DOI: 10.1016/j.jep.2019.112484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A promising approach to treat a variety of diseases are considered as complementary and alternative herbal medicines. Prunus serrulata var. spontanea L. (Rosaceae) is used as herbal medicine to treat allergic diseases according to the Donguibogam, a tradition medical book of the Joseon Dynasty in Korea. AIM OF THE STUDY We prepared the aqueous extract of the bark of P. serrulata (AEBPS) and aimed to investigate the effects in mouse anaphylaxis models and various types of mast cells, including RBL-2H3, primary cultured peritoneal and bone marrow-derived mast cells. MATERIALS AND METHODS We used ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models, in vivo. The control drug dexamethasone (10 mg/kg) was used to compare the effectiveness of AEBPS (1-100 mg/kg). In vitro, IgE-stimulated mast cells were used to confirm the role of AEBPS (1-100 μg/mL). For statistical analyses, p values less than 0.05 were considered to be significant. RESULTS In ASA model, oral administration of AEBPS suppressed the hypothermia and increased level of serum histamine in a dose-dependent manner. AEBPS attenuated the serum IgE, OVA-specific IgE, and interleukin (IL)-4. Oral administration of AEBPS also blocked mast cell-dependent PCA. AEBPS suppressed degranulation of mast cells by reducing intracellular calcium level in mast cells. AEBPS inhibited tumor necrosis factor-α and IL-4 expression and secretion in a concentration-dependent manner through the reduction of nuclear factor-κB. CONCLUSIONS On the basis of these findings, AEBPS could serve as a potential therapeutic target for the management of mast cell-mediated allergic inflammation and as a regulator of mast cell activation.
Collapse
Affiliation(s)
- Min-Jong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ae Choi
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yeon-Yong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
6
|
Miyake S, Irikura D, Yamasaki T. Detection of Mast Cells Expressing c-Kit Using Antibody Covalently Bound to Gelatin Elongated from Surface of Immunosensor Based on Surface Plasmon Resonance. ANAL SCI 2019; 35:811-813. [PMID: 30930352 DOI: 10.2116/analsci.19n012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An immunosensor based on surface plasmon resonance was applied to detect mast cells expressing c-Kit. Sufficient detection of the mast cells was achieved by covalent immobilization of gelatin firstly on the sensor surface and followed by covalent binding of the anti-c-Kit antibody to lysine residues in the gelatin molecules through bis(sulfosuccinimidyl)suberate (BS3) treatment. By using BS3, which is a homo-bifunctional reagent, the lysine residues of the anti-c-Kit antibody easily bound to the lysine residues of the gelatin in the physiological condition. The lower limit of detection was 104 cells/mL.
Collapse
Affiliation(s)
- Shiro Miyake
- Department of Food and Life Science, Azabu University.,Research & Development Division, Horiba, Ltd
| | | | | |
Collapse
|
7
|
Meyer N, Zenclussen AC. Mast cells-Good guys with a bad image? Am J Reprod Immunol 2018; 80:e13002. [DOI: 10.1111/aji.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| |
Collapse
|
8
|
Yu T, He Z, Yang M, Song J, Ma C, Ma S, Feng J, Liu B, Wang X, Wei Z, Li J. The development of methods for primary mast cells in vitro and ex vivo: An historical review. Exp Cell Res 2018; 369:179-186. [PMID: 29842878 DOI: 10.1016/j.yexcr.2018.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
Mast cells (MCs) are tissue-based stationary effector cells that form the immune system's first-line defense against various challenges. They are developed from the bone marrow-derived progenitors to complete their differentiation and maturation in the tissues where they eventually establish residence. MCs have been implicated in many diseases, such as allergy, parasitic infection, and neoplastic disorders. Immortalized MC lines, such as RBL-2H3, HMC-1, and LAD-2, are useful for investigating the biological functions of MC only to some extents due to the restriction of degranulation evaluation, in vivo injection and other factors. Over the past few decades, technologies for acquiring primarily MCs have been continually optimized, and novel protocols have been proposed. However, no relevant publications have analyzed and summarized these techniques. In this review, the classical approaches for extracting MCs are generalized, and new methods with potential values are introduced. We also evaluate the advantages and applicability of diverse MC models. Since MCs exhibit substantial plasticity and functional diversity due to different origins, it is both necessary and urgent to select a reliable and suitable source of MCs for a particular study.
Collapse
Affiliation(s)
- Tianyu Yu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Zhigang He
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Muqing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Jian Song
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Cheng Ma
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Sunqiang Ma
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Junlan Feng
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China
| | - Bin Liu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Xiaodong Wang
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China
| | - Zhubo Wei
- Cancer Center, Houston Methodist Research Institute, United States.
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University School of Medicine, China; Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, China.
| |
Collapse
|