1
|
Vásquez Martínez IP, Pérez-Campos E, Pérez-Campos Mayoral L, Cruz Luis HI, Pina Canseco MDS, Zenteno E, Bazán Salinas IL, Martínez Cruz M, Pérez-Campos Mayoral E, Hernández-Huerta MT. O-GlcNAcylation: Crosstalk between Hemostasis, Inflammation, and Cancer. Int J Mol Sci 2024; 25:9896. [PMID: 39337387 PMCID: PMC11432004 DOI: 10.3390/ijms25189896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc, O-GlcNAcylation) is a post-translational modification of serine/threonine residues of proteins. Alterations in O-GlcNAcylation have been implicated in several types of cancer, regulation of tumor progression, inflammation, and thrombosis through its interaction with signaling pathways. We aim to explore the relationship between O-GlcNAcylation and hemostasis, inflammation, and cancer, which could serve as potential prognostic tools or clinical predictions for cancer patients' healthcare and as an approach to combat cancer. We found that cancer is characterized by high glucose demand and consumption, a chronic inflammatory state, a state of hypercoagulability, and platelet hyperaggregability that favors thrombosis; the latter is a major cause of death in these patients. Furthermore, we review transcription factors and pathways associated with O-GlcNAcylation, thrombosis, inflammation, and cancer, such as the PI3K/Akt/c-Myc pathway, the nuclear factor kappa B pathway, and the PI3K/AKT/mTOR pathway. We also review infectious agents associated with cancer and chronic inflammation and potential inhibitors of cancer cell development. We conclude that it is necessary to approach both the diagnosis and treatment of cancer as a network in which multiple signaling pathways are integrated, and to search for a combination of potential drugs that regulate this signaling network.
Collapse
Affiliation(s)
- Itzel Patricia Vásquez Martínez
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Eduardo Pérez-Campos
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico; (E.P.-C.); (M.M.C.)
| | - Laura Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Holanda Isabel Cruz Luis
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - María del Socorro Pina Canseco
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Edgar Zenteno
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Irma Leticia Bazán Salinas
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico; (E.P.-C.); (M.M.C.)
| | - Eduardo Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - María Teresa Hernández-Huerta
- National Council of Humanities, Sciences and Technologies (CONAHCYT), Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
2
|
Ming A, Zhao J, Liu Y, Wang Y, Wang X, Li J, Zhang L. O-glycosylation in viruses: A sweet tango. MLIFE 2024; 3:57-73. [PMID: 38827513 PMCID: PMC11139210 DOI: 10.1002/mlf2.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 06/04/2024]
Abstract
O-glycosylation is an ancient yet underappreciated protein posttranslational modification, on which many bacteria and viruses heavily rely to perform critical biological functions involved in numerous infectious diseases or even cancer. But due to the innate complexity of O-glycosylation, research techniques have been limited to study its exact role in viral attachment and entry, assembly and exit, spreading in the host cells, and the innate and adaptive immunity of the host. Recently, the advent of many newly developed methodologies (e.g., mass spectrometry, chemical biology tools, and molecular dynamics simulations) has renewed and rekindled the interest in viral-related O-glycosylation in both viral proteins and host cells, which is further fueled by the COVID-19 pandemic. In this review, we summarize recent advances in viral-related O-glycosylation, with a particular emphasis on the mucin-type O-linked α-N-acetylgalactosamine (O-GalNAc) on viral proteins and the intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modifications on host proteins. We hope to provide valuable insights into the development of antiviral reagents or vaccines for better prevention or treatment of infectious diseases.
Collapse
Affiliation(s)
- Annan Ming
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jianxin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Yihan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yibo Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
| | - Xiaohui Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiChina
- Beijing National Laboratory for Molecular SciencesBeijingChina
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Leiliang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
3
|
Bolanle IO, Riches-Suman K, Williamson R, Palmer TM. Emerging roles of protein O-GlcNAcylation in cardiovascular diseases: Insights and novel therapeutic targets. Pharmacol Res 2021; 165:105467. [PMID: 33515704 DOI: 10.1016/j.phrs.2021.105467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.
Collapse
Key Words
- (R)-N-(Furan-2-ylmethyl)-2-(2-methoxyphenyl)-2-(2-oxo-1,2-dihydroquinoline-6-sulfonamido)-N-(thiophen-2-ylmethyl)acetamide [OSMI-1] (PubChem CID: 118634407)
- 2-(2-Amino-3-methoxyphenyl)-4H-chromen-4-one [PD98059] (PubChem CID: 4713)
- 5H-Pyrano[3,2-d]thiazole-6,7-diol, 2-(ethylamino)-3a,6,7,7a-tetrahydro-5-(hydroxymethyl)-(3aR,5R,6S,7R,7aR) [Thiamet-G] (PubChem CID: 1355663540)
- 6-Diazo-5-oxo-l-norleucine [DON] (PubChem CID: 9087)
- Alloxan (PubChem CID: 5781)
- Azaserine (PubChem CID: 460129)
- BADGP, Benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside [BADGP] (PubChem CID: 561184)
- Cardiovascular disease
- Methoxybenzene-sulfonamide [KN-93] (PubChem CID: 5312122)
- N-[(5S,6R,7R,8R)-6,7-Dihydroxy-5-(hydroxymethyl)-2-(2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-8-yl]-2-methylpropanamide [GlcNAcstatin] (PubChem CID: 122173013)
- O-(2-Acetamido-2-deoxy-d-glucopyranosyliden)amino-N-phenylcarbamate [PUGNAc] (PubChem CID: 9576811)
- O-GlcNAc transferase
- O-GlcNAcase
- Protein O-GlcNAcylation
- Streptozotocin (PubCHem CID: 7067772)
Collapse
Affiliation(s)
- Israel Olapeju Bolanle
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Kirsten Riches-Suman
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, UK
| | - Ritchie Williamson
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
4
|
Olvera A, Cedeño S, Llano A, Mothe B, Sanchez J, Arsequell G, Brander C. Does Antigen Glycosylation Impact the HIV-Specific T Cell Immunity? Front Immunol 2021; 11:573928. [PMID: 33552045 PMCID: PMC7862545 DOI: 10.3389/fimmu.2020.573928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
It is largely unknown how post-translational protein modifications, including glycosylation, impacts recognition of self and non-self T cell epitopes presented by HLA molecules. Data in the literature indicate that O- and N-linked glycosylation can survive epitope processing and influence antigen presentation and T cell recognition. In this perspective, we hypothesize that glycosylation of viral proteins and processed epitopes contribute to the T cell response to HIV. Although there is some evidence for T cell responses to glycosylated epitopes (glyco-epitopes) during viral infections in the literature, this aspect has been largely neglected for HIV. To explore the role of glyco-epitope specific T cell responses in HIV infection we conducted in silico and ex vivo immune studies in individuals with chronic HIV infection. We found that in silico viral protein segments with potentially glycosylable epitopes were less frequently targeted by T cells. Ex vivo synthetically added glycosylation moieties generally masked T cell recognition of HIV derived peptides. Nonetheless, in some cases, addition of simple glycosylation moieties produced neo-epitopes that were recognized by T cells from HIV infected individuals. Herein, we discuss the potential importance of these observations and compare limitations of the employed technology with new methodologies that may have the potential to provide a more accurate assessment of glyco-epitope specific T cell immunity. Overall, this perspective is aimed to support future research on T cells recognizing glycosylated epitopes in order to expand our understanding on how glycosylation of viral proteins could alter host T cell immunity against viral infections.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | | | - Anuska Llano
- IrsiCaixa-AIDS Research Institute, Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa-AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Abstract
Therapeutic approaches towards a functional cure or eradication of HIV have gained renewed momentum upon encouraging data emerging from studies in SIV monkey models and recent results from human clinical studies. However, a multitude of questions remain to be addressed, including how to deal with the latent viral reservoir, how to boost the host immune response to the virus and what the hurdles are to reach relevant viral compartments in the body. Advances have been made especially with regard to identifying agents that can reactivate the latent virus in vivo and boost the cellular and humoral immunity, but it remains largely unclear whether any of these strategies can awaken a sufficiently large fraction of the viral reservoir and whether the boosted immunity can prevent rapid viral replication once antiretroviral treatments are stopped.
Collapse
Affiliation(s)
- Lucia Bailon
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Beatriz Mothe
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), Vic, Spain
| | | | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain.
- Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), Vic, Spain.
- AELIX Therapeutics, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
6
|
N-Glycosylation of TREK-1/hK 2P2.1 Two-Pore-Domain Potassium (K 2P) Channels. Int J Mol Sci 2019; 20:ijms20205193. [PMID: 31635148 PMCID: PMC6829520 DOI: 10.3390/ijms20205193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
Mechanosensitive hTREK-1 two-pore-domain potassium (hK2P2.1) channels give rise to background currents that control cellular excitability. Recently, TREK-1 currents have been linked to the regulation of cardiac rhythm as well as to hypertrophy and fibrosis. Even though the pharmacological and biophysical characteristics of hTREK-1 channels have been widely studied, relatively little is known about their posttranslational modifications. This study aimed to evaluate whether hTREK-1 channels are N-glycosylated and whether glycosylation may affect channel functionality. Following pharmacological inhibition of N-glycosylation, enzymatic digestion or mutagenesis, immunoblots of Xenopus laevis oocytes and HEK-293T cell lysates were used to assess electrophoretic mobility. Two-electrode voltage clamp measurements were employed to study channel function. TREK-1 channel subunits undergo N-glycosylation at asparagine residues 110 and 134. The presence of sugar moieties at these two sites increases channel function. Detection of glycosylation-deficient mutant channels in surface fractions and recordings of macroscopic potassium currents mediated by these subunits demonstrated that nonglycosylated hTREK-1 channel subunits are able to reach the cell surface in general but with seemingly reduced efficiency compared to glycosylated subunits. These findings extend our understanding of the regulation of hTREK-1 currents by posttranslational modifications and provide novel insights into how altered ion channel glycosylation may promote arrhythmogenesis.
Collapse
|
7
|
Ferron M, Denis M, Persello A, Rathagirishnan R, Lauzier B. Protein O-GlcNAcylation in Cardiac Pathologies: Past, Present, Future. Front Endocrinol (Lausanne) 2018; 9:819. [PMID: 30697194 PMCID: PMC6340935 DOI: 10.3389/fendo.2018.00819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023] Open
Abstract
O-GlcNAcylation is a ubiquitous and reversible post-translational protein modification that has recently gained renewed interest due to the rapid development of analytical tools and new molecules designed to specifically increase the level of protein O-GlcNAcylation. The level of O-GlcNAc modification appears to have either deleterious or beneficial effects, depending on the context (exposure time, pathophysiological context). While high O-GlcNAcylation levels are mostly reported in chronic diseases, the increase in O-GlcNAc level in acute stresses such as during ischemia reperfusion or hemorrhagic shock is reported to be beneficial in vitro, ex vivo, or in vivo. In this context, an increase in O-GlcNAc levels could be a potential new cardioprotective therapy, but the ambivalent effects of protein O-GlcNAcylation augmentation remains as a key problem to be solved prior to their transfer to the clinic. The emergence of new analytical tools has opened new avenues to decipher the mechanisms underlying the beneficial effects associated with an O-GlcNAc level increase. A better understanding of the exact roles of O-GlcNAc on protein function, targeting or stability will help to develop more targeted approaches. The aim of this review is to discuss the mechanisms and potential beneficial impact of O-GlcNAc modulation, and its potential as a new clinical target in cardiology.
Collapse
Affiliation(s)
- Marine Ferron
- Montreal Heart Institute, Montreal, QC, Canada
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- *Correspondence: Marine Ferron
| | - Manon Denis
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | | | | | | |
Collapse
|