1
|
Xu Y, Zhou J, Wu Y, Shen J, Fu X, Liu M, Liang S. New insights into the role of complement system in colorectal cancer (Review). Mol Med Rep 2025; 31:68. [PMID: 39791217 PMCID: PMC11751662 DOI: 10.3892/mmr.2025.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. With the growing understanding of immune regulation in tumors, the complement system has been recognized as a key regulator of tumor immunity. Traditionally, the complement cascade, considered an evolutionarily conserved defense mechanism against invading pathogens, has been viewed as a crucial inhibitor of tumor progression. Complement components or activation products produced via cascade‑dependent or ‑independent processes are associated with the regulation of tumor‑associated inflammation. Various forms of complement activation products present in body fluids or inside cells, along with complement regulatory proteins and complement receptors, are involved in tumor cell growth and modulating the tumor microenvironment. In the present review, the role of the complement system in the tumor immunity of CRC is discussed. In addition, the contribution of the unconventional cascade‑independent pathway of complement activation in CRC progression is highlighted. A deeper understanding of the mechanism underlying the complement system in colitis‑associated colorectal cancer (CAC) may provide novel insights to assist the development of methods to prevent tumor progression and identify potential targets for the treatment of CAC.
Collapse
Affiliation(s)
- Yuwen Xu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiaqi Zhou
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuanyuan Wu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jie Shen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoyan Fu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Meifang Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Shujuan Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
2
|
Xing Y, Zhang D, Fang L, Wang J, Liu C, Wu D, Liu X, Wang X, Min W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023; 12:3580. [PMID: 37835232 PMCID: PMC10572247 DOI: 10.3390/foods12193580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The complement pathway is a major component of the innate immune system, which is critical for recognizing and clearing pathogens that rapidly react to defend the body against external pathogens. Many components of this pathway are expressed throughout the brain and play a beneficial role in synaptic pruning in the developing central nervous system (CNS). However, excessive complement-mediated synaptic pruning in the aging or injured brain may play a contributing role in a wide range of neurodegenerative diseases. Complement Component 1q (C1q), an initiating recognition molecule of the classical complement pathway, can interact with a variety of ligands and perform a range of functions in physiological and pathophysiological conditions of the CNS. This review considers the function and immunomodulatory mechanisms of C1q; the emerging role of C1q on synaptic pruning in developing, aging, or pathological CNS; the relevance of C1q; the complement pathway to neurodegenerative diseases; and, finally, it summarizes the foods with beneficial effects in neurodegenerative diseases via C1q and complement pathway and highlights the need for further research to clarify these roles. This paper aims to provide references for the subsequent study of food functions related to C1q, complement, neurodegenerative diseases, and human health.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (D.Z.); (L.F.); (J.W.); (C.L.); (D.W.); (X.L.)
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Wang Y, You K, You Y, Li Q, Feng G, Ni J, Cao X, Zhang X, Wang Y, Bao W, Wang X, Chen T, Li H, Huang Y, Lyu J, Yu S, Li H, Xu S, Zeng K, Shen X. Paeoniflorin prevents aberrant proliferation and differentiation of intestinal stem cells by controlling C1q release from macrophages in chronic colitis. Pharmacol Res 2022; 182:106309. [PMID: 35716915 DOI: 10.1016/j.phrs.2022.106309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
The pathological features of inflammatory bowel disease necessitate therapeutic strategies aimed at restoring intestinal mucosal barrier function in addition to controlling inflammation. Paeoniflorin, a bioactive herbal constituent isolated from the root of Paeonia albiflora Pall, has been reported to protect against acute colitis in mice. However, the direct molecular target of paeoniflorin in preventing colitis remains elusive. Here, we evaluated the therapeutical effects of Paeoniflorin using IL-10-/- chronic colitis model, and explored the precise mechanism of action involved. Our results demonstrated that intragastric administration of Paeoniflorin significantly ameliorated inflammatory response and restored the aberrant intestinal proliferation and differentiation in IL-10-/-colitis mice. By utilizing a chemical biology approach, we identified C1qa, a crucial component of C1q, is the direct target of Paeoniflorin. Binding of Paeoniflorin to C1qa prevented the cleavage of C1q on macrophages, resulting in the aggregation of surface membrane-anchored C1q and the diminished C1q secretion. The excessive surface membrane-anchored C1q significantly enhanced the phagocytic capability of macrophages and promoted the elimination of infiltrated bacteria and inflammatory cells in mouse colon. The reduced C1q secretion conferred by Paeoniflorin dampened Wnt/β-catenin signaling activation, thereby rectifying the aberrant proliferation and differentiation of intestinal stem cells (ISCs). In summary, our study demonstrates that Paeoniflorin can orchestrate mucosal healing and intestinal inflammation elimination through C1q-bridged macrophage-ISCs crosstalk, highlighting a novel strategy to treat chronic colitis by restoring mucosal homeostasis via targeting C1q.
Collapse
Affiliation(s)
- Yirui Wang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qian Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Ni
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinyue Cao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaowen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanhang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xu Wang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuran Huang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shihang Yu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Son M. Understanding the contextual functions of C1q and LAIR-1 and their applications. Exp Mol Med 2022; 54:567-572. [PMID: 35562585 PMCID: PMC9098383 DOI: 10.1038/s12276-022-00774-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
The importance of the complement component C1q has been highlighted by its involvement in autoimmunity, infection, inflammatory diseases, and tumors. The unique tulip-like structure of C1q has both a collagen-like stalk (C1q tail) and heterotrimeric globular head (gC1q), each with different binding specificities, and the binding of these components to their respective receptors leads to functional complexities in the body and bridges innate and adaptive immunity. This review describes the fundamental roles of C1q in various microenvironments and focuses on the importance of the interactions of C1q and its receptors with the inhibitory receptor LAIR-1 in maintaining homeostasis. Current therapeutic opportunities modulating LAIR-1 are also discussed. Research into the activities of the protein C1q, involved in a cascade of molecular interactions of the immune response called complement activation, is revealing new details of the protein’s role and opening up possible new therapeutic opportunities. Myoungsun Son at Feinstein Institutes for Medical Research in Manhasset, USA, reviews the involvement of C1q in infection, autoimmunity, inflammatory diseases and tumors. The interaction of C1q with a receptor protein called LAIR-1 seems to be particularly significant. LAIR-1 is present in the membrane of most blood-forming cells and is involved in maintaining the healthy balance of cellular activities referred to as homeostasis. Emerging research suggests that targeting the interactions between C1q and LAIR-1 could enable the development of new treatments for many diseases, including inflammatory diseases, the autoimmune condition lupus, a variety of cancers, and possibly Covid-19.
Collapse
Affiliation(s)
- Myoungsun Son
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA. .,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
5
|
Wu L, Zhao X, Ma H, Zhang L, Li X. Discoidin Domain Receptor 1, a Potential Biomarker and Therapeutic Target in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2037-2044. [PMID: 35237068 PMCID: PMC8882470 DOI: 10.2147/ijgm.s348110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the most lethal human cancers in the world due to its high degree of malignancy, easy invasion and metastasis, poor therapeutic effect and poor prognosis. Nowadays, there is no very effective diagnosis and treatment method. It is crucial to elucidate the underlying pathogenesis and mechanisms of HCC for developing new and effective diagnostic/prognostic biomarkers and therapies. Discoidin domain receptors (DDRs) belong to the family of transmembrane receptor tyrosine kinases (RTKs) and are recognized as playing central regulatory roles in a variety of high incidence human diseases, including tumors. DDRs have two members, DDR1 and DDR2. The role of DDR1 in several tumors has been extensively studied, and many researchers have identified it as a powerful candidate target for the development of functional and effective tumor treatment inhibitors. However, its role and mechanism in HCC are ill defined. In this article, we review the advanced insights into the progression of DDR1 in HCC, particularly the ligands and mechanisms in invasion and metastasis, which may open new avenues for the therapeutic utility of HCC.
Collapse
Affiliation(s)
- Linghong Wu
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Xinhua Zhao
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Huan Ma
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Lili Zhang
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
| | - Xiaoan Li
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People’s Republic of China
- Correspondence: Xiaoan Li, Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Fucheng District, Mianyang, 621000, Sichuan, People’s Republic of China, Tel +86 816 224 3593 Email
| |
Collapse
|
6
|
Trendelenburg M. Autoantibodies against complement component C1q in systemic lupus erythematosus. Clin Transl Immunology 2021; 10:e1279. [PMID: 33968409 PMCID: PMC8082710 DOI: 10.1002/cti2.1279] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the archetype of a systemic autoimmune disease, but the multifaceted pathogenic mechanisms leading to inflammation and organ damage are not fully understood. Homozygous deficiency of complement C1q, the first component of the classical pathway of complement, is strongly associated with the development of SLE, thus pointing at a primarily protective role of C1q. However, while most SLE patients do not have hereditary C1q deficiency, there is indirect evidence for the importance of C1q in the inflammatory processes of the disease, including hypocomplementemia as a result of activation via the classical pathway, deposition of C1q in affected tissues and the occurrence of autoantibodies against C1q (anti‐C1q). The growing body of knowledge on anti‐C1q led to the establishment of a biomarker that is used in the routine clinical care of SLE patients. Exploring the binding characteristics of anti‐C1q allows to understand the mechanisms, that lead to the expression of relevant autoantigenic structures and the role of genetic as well as environmental factors. Lastly, the analysis of the pathophysiological consequences of anti‐C1q is of importance because C1q, the target of anti‐C1q, is a highly functional molecule whose downstream effects are altered by the binding of the autoantibody. This review summarises current study data on anti‐C1q and their implications for the understanding of SLE.
Collapse
Affiliation(s)
- Marten Trendelenburg
- Division of Internal Medicine University Hospital Basel Basel Switzerland.,Clinical Immunology Department of Biomedicine University of Basel Basel Switzerland
| |
Collapse
|
7
|
Wu WJ, Tan Y, Liu XL, Yu F, Zhao MH. C1q A08 Is a Half-Cryptic Epitope of Anti-C1q A08 Antibodies in Lupus Nephritis and Important for the Activation of Complement Classical Pathway. Front Immunol 2020; 11:848. [PMID: 32536911 PMCID: PMC7267003 DOI: 10.3389/fimmu.2020.00848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
To investigate the fine epitope(s) of anti-C1q A08 antibodies and their roles in complement activation in lupus nephritis, C1q A08 and related peptides with various amino acid sequences around A08 were synthesized. Anti-C1q A08 antibodies from 10 lupus nephritis patients were purified from plasmapheresis samples, and four monoclonal antibodies against C1q A08 were screened and identified from mouse hybridoma cells, to study the fine epitope(s) of C1q A08 using ELISA and Biolayer Interferometry (BLI). The biofunction of anti-C1q A08 antibodies for complement classical pathway activation was investigated by C3 activation assay. Anti-C1q A08 antibodies and anti-C1q antibodies were also detected in the sera of female BALB/C mice immunized by C1q A08 peptides. None of the anti-C1q A08 antibodies, which were affinity purified from the 10 lupus nephritis patients, could bind intact C1q coated on microtitre plates, neither could the anti-C1q antibodies bind to C1q A08 peptides coupled on resin, indicating that the human anti-C1q antibodies and anti-C1q A08 antibodies may recognize different epitopes of C1q. One of the four C1q A08 mAbs (32-4) bound to the six amino acids of N-terminus of C1q A08, while another C1q A08 mAb (17-9) bound to eight or 10 amino acids of C-terminus of A08. The third and fourth C1q A08 mAb (1A12 and 4B11) bound to the whole sequence of A08. Only 32-4 mAb bound to the intact C1q coating on an ELISA plate, whereas 17-9 mAb, 1A12 mAb, and 4B11 mAb could not. However, using a BLI assay, 17-9 mAb, 1A12 mAb, and 4B11 mAb, but not 32-4 mAb, could bind to intact C1q. Furthermore, 1A12 mAb and 4B11 mAb, but not 32-4 and 17-9 mAb, could inhibit the activation of complement classical pathway. Anti-C1q A08 antibodies were detected in all the female BALB/C mice in the experimental group but not in the control group. Two out of six in the experimental group developed anti-C1q antibodies. C1q A08 is a half-cryptic epitope of C1q involving N-terminal six amino acids of C1q A08, and this is important to the activation of a complement classical pathway, and some anti-C1q A08 antibodies were able to prevent this process. Epitope spreading of C1q occurred in the mice immunized with C1q A08 peptides.
Collapse
Affiliation(s)
- Wen-Jun Wu
- School of Life Science, Tsinghua University, Beijing, China.,Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Xiao-Ling Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.,Department of Nephrology, Peking University International Hospital, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
8
|
Ghebrehiwet B, Geisbrecht BV, Xu X, Savitt AG, Peerschke EIB. The C1q Receptors: Focus on gC1qR/p33 (C1qBP, p32, HABP-1) 1. Semin Immunol 2019; 45:101338. [PMID: 31744753 DOI: 10.1016/j.smim.2019.101338] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
In the past several years, a number of C1q binding surface proteins or receptors have been described. This is not of course surprising considering the complexity of the C1q molecule and its ability to bind to a wide range of cellular and plasma proteins via both its collagen-like [cC1q] region and its heterotrimeric globular heads [gC1q] each of which in turn is capable of binding a specific ligand. However, while each of these "receptor" molecules undoubtedly plays a specific function within its restricted microenvironment, and therefore merits full attention, this review nonetheless, will singularly focus on the structure and function of gC1qR-a multi-functional and multi-compartmental protein, which plays an important role in inflammation, infection, and cancer. Although first identified as a receptor for C1q, gC1qR has been shown to bind to a plethora of proteins found in plasma, on the cell surface and on pathogenic microorganisms. The plasma proteins that bind to gC1qR are mostly blood coagulation proteins and include high molecular weight kininogen [HK], Factor XII [Hageman factor], fibrinogen, thrombin [FII], and multimeric vitronectin. This suggests that gC1qR can play an important role in modulating not only of fibrin formation, particularly at local sites of immune injury and/or inflammation, but by activating the kinin/kallikrein system, it is also able to generate, bradykinin, a powerful vasoactive peptide that is largely responsible for the swelling seen in angioedema. Another important function of gC1qR is in cancer, where it has been shown to play a role in tumor cell survival, growth and metastatic invasion by interacting with critical molecules in the tumor cell microenvironment including those of the complement system and kinin system. Finally, by virtue of its ability to interact with a growing list of pathogen-associated molecules, including bacterial and viral ligands, gC1qR is becoming recognized as an important pathogen recognition receptor [PRR]. Given the numerous roles it plays in a growing list of disease settings, gC1qR has now become a potential target for the development of monoclonal antibody-based and/or small molecule-based therapies.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794-8161 USA.
| | - Brian V Geisbrecht
- Kansas State University, Department of Biochemistry and Molecular Biophysics Manhattan, KS 66506 USA
| | - Xin Xu
- Kansas State University, Department of Biochemistry and Molecular Biophysics Manhattan, KS 66506 USA
| | - Anne G Savitt
- The Departments of Medicine, Stony Brook University, Stony Brook, NY 11794-8161 USA
| | - Ellinor I B Peerschke
- The Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, 10065, USA
| |
Collapse
|
9
|
Mangogna A, Agostinis C, Bonazza D, Belmonte B, Zacchi P, Zito G, Romano A, Zanconati F, Ricci G, Kishore U, Bulla R. Is the Complement Protein C1q a Pro- or Anti-tumorigenic Factor? Bioinformatics Analysis Involving Human Carcinomas. Front Immunol 2019; 10:865. [PMID: 31130944 PMCID: PMC6509152 DOI: 10.3389/fimmu.2019.00865] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
C1q is the first subcomponent of the classical pathway of the complement system and belongs to the C1q/Tumor Necrosis Factor superfamily. C1q can perform a diverse range of immune and non-immune functions in a complement-dependent as well as -independent manner. Being a pattern recognition molecule of the innate immunity, C1q can recognize a number of self, non-self and altered-self ligands and bring about effector mechanisms designed to clear pathogens via opsonisation and inflammatory response. C1q is locally synthesized by macrophages and dendritic cells, and thus, can get involved in a range of biological processes, such as angiogenesis and tissue remodeling, immune modulation, and immunologic tolerance. The notion of C1q involvement in the pathogenesis of cancer is still evolving. C1q appears to have a dual role in cancer: tumor promoting as well as tumor-protective, depending on the context of the disease. In the current study, we performed a bioinformatics analysis to investigate whether C1q can serve as a potential prognostic marker for human carcinoma. We used the Oncomine database and the survival analysis platforms Kaplan-Meier plotter. Our results showed that high levels of C1q have a favorable prognostic index in basal-like breast cancer for disease-free survival, and in HER2-positive breast cancer for overall survival, while it showed a pro-tumorigenic role of C1q in lung adenocarcinoma, and in clear cell renal cell carcinoma. This in silico study, if validated via a retrospective study, can be a step forward in establishing C1q as a new tool as a prognostic biomarker for various carcinoma.
Collapse
Affiliation(s)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Human Pathology Section, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Andrea Romano
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|