1
|
Guerrero A, Galindo-Sánchez CE, Martínez-Vázquez AV, Lizárraga-Partida ML. Phylogenetic Characterization of Vibrio vulnificus Strains from Oysters and its Comparison with Clinical vcgE Genotype Strain. Foodborne Pathog Dis 2025; 22:31-38. [PMID: 39588926 PMCID: PMC11839520 DOI: 10.1089/fpd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Twenty-one environmental Vibrio vulnificus strains from the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) bacteria collection, 20 of them isolated from oyster samples and 1 from a reported clinical case, were sequenced to analyze the genomic divergence between 2 genotypes, E-genotype and C-genotype, proposed by various groups to distinguish clinical (C) from environmental (E) V. vulnificus strains. As indicated in previous analyses of PFGE, MLST, and rtxA, 9 of the CICESE isolates were identified as vcgE, compared with 12 as vcgC. Separation of the genotypes into these 2 groups was confirmed in this study, based on the presence of certain genes in the 21 genomes, the presence of virulence factors, and rtxA sequencing. Most genomes from oyster isolates expressed rtxA-C type, with the exception being rtxA-M type detected in CICESE-594 a vcgE strain isolated from a clinical case. Although several genetic approaches clearly indicate differences between the C- and E-genotypes, none of them, including those in this study, can highlight a single factor that could be used to indicate the potential pathogenicity of V. vulnificus isolated from oysters.
Collapse
Affiliation(s)
- Abraham Guerrero
- CONAHCyT-CIAD, Food Research and Development Center A.C. Mazatlán Unit (Centro de Investigación Alimentación y Desarrollo, A.C. Unidad Mazatlán), Mazatlán, México
| | | | | | | |
Collapse
|
2
|
Park JE, Yun JH, Lee W, Lee JS. C-ter100 peptide derived from Vibrio vEP-45 protease acts as a pathogen-associated molecular pattern to induce inflammation and innate immunity. PLoS Pathog 2024; 20:e1012474. [PMID: 39186780 PMCID: PMC11379387 DOI: 10.1371/journal.ppat.1012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/06/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
The bacterium Vibrio vulnificus causes fatal septicemia in humans. Previously, we reported that an extracellular metalloprotease, vEP-45, secreted by V. vulnificus, undergoes self-proteolysis to generate a 34 kDa protease (vEP-34) by losing its C-terminal domain to produce the C-ter100 peptide. Moreover, we revealed that vEP-45 and vEP-34 proteases induce blood coagulation and activate the kallikrein/kinin system. However, the role of the C-ter100 peptide fragment released from vEP-45 in inducing inflammation is still unclear. Here, we elucidate, for the first time, the effects of C-ter100 on inducing inflammation and activating host innate immunity. Our results showed that C-ter100 could activate NF-κB by binding to the receptor TLR4, thereby promoting the secretion of inflammatory cytokines and molecules, such as TNF-α and nitric oxide (NO). Furthermore, C-ter100 could prime and activate the NLRP3 inflammasome (NLRP3, ASC, and caspase 1), causing IL-1β secretion. In mice, C-ter100 induced the recruitment of immune cells, such as neutrophils and monocytes, along with histamine release into the plasma. Furthermore, the inflammatory response induced by C-ter100 could be effectively neutralized by an anti-C-ter100 monoclonal antibody (C-ter100Mab). These results demonstrate that C-ter100 can be a pathogen-associated molecular pattern (PAMP) that activates an innate immune response during Vibrio infection and could be a target for the development of antibiotics.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, Republic of Korea
- BK21-Four Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
4
|
Choi G, Choi SH. Complex regulatory networks of virulence factors in Vibrio vulnificus. Trends Microbiol 2022; 30:1205-1216. [PMID: 35753865 DOI: 10.1016/j.tim.2022.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/13/2023]
Abstract
The fulminating zoonotic pathogen Vibrio vulnificus is the causative agent of fatal septicemia in humans and fish, raising tremendous economic burdens in healthcare and the aquaculture industry. V. vulnificus exploits various virulence factors, including biofilm-related factors and exotoxins, for its persistence in nature and pathogenesis during infection. Substantial studies have found that the expression of virulence factors is coordinately regulated by numerous transcription factors that recognize the changing environments. Here, we summarize and discuss the recent discoveries of the physiological roles of virulence factors in V. vulnificus and their regulation by transcription factors in response to various environmental signals. This expanded understanding of molecular pathogenesis would provide novel clues to develop an effective antivirulence therapy against V. vulnificus infection.
Collapse
Affiliation(s)
- Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Chung HY, Bian Y, Lim KM, Kim BS, Choi SH. MARTX toxin of Vibrio vulnificus induces RBC phosphatidylserine exposure that can contribute to thrombosis. Nat Commun 2022; 13:4846. [PMID: 35978022 PMCID: PMC9385741 DOI: 10.1038/s41467-022-32599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
V. vulnificus-infected patients suffer from hemolytic anemia and circulatory lesions, often accompanied by venous thrombosis. However, the pathophysiological mechanism of venous thrombosis associated with V. vulnificus infection remains largely unknown. Herein, V. vulnificus infection at the sub-hemolytic level induced shape change of human red blood cells (RBCs) accompanied by phosphatidylserine exposure, and microvesicle generation, leading to the procoagulant activation of RBCs and ultimately, acquisition of prothrombotic activity. Of note, V. vulnificus exposed to RBCs substantially upregulated the rtxA gene encoding multifunctional autoprocessing repeats-in-toxin (MARTX) toxin. Mutant studies showed that V. vulnificus-induced RBC procoagulant activity was due to the pore forming region of the MARTX toxin causing intracellular Ca2+ influx in RBCs. In a rat venous thrombosis model triggered by tissue factor and stasis, the V. vulnificus wild type increased thrombosis while the ΔrtxA mutant failed to increase thrombosis, confirming that V. vulnificus induces thrombosis through the procoagulant activation of RBCs via the mediation of the MARTX toxin. The pathophysiological mechanism of venous thrombosis associated with Vibrio vulnificus infection remains largely unknown. In this work, the authors investigate this association, focusing on effects of the pore-forming MARTX toxin of V. vulnificus on red blood cells, and the utilisation of a rat venous thrombosis model.
Collapse
Affiliation(s)
- Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Zhu S, Ma AH, Zhu Z, Adib E, Rao T, Li N, Ni K, Chittepu VCSR, Prabhala R, Garisto Risco J, Kwiatkowski D, Mouw K, Sonpavde G, Cheng F, Pan CX. Synergistic antitumor activity of pan-PI3K inhibition and immune checkpoint blockade in bladder cancer. J Immunother Cancer 2021; 9:jitc-2021-002917. [PMID: 34725212 PMCID: PMC8562536 DOI: 10.1136/jitc-2021-002917] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
Background Immune checkpoint blockade (ICB) induces durable response in approximately 20% of patients with advanced bladder urothelial cancer (aUC). Over 50% of aUCs harbor genomic alterations along the phosphoinositide 3-kinase (PI3K) pathway. The goal of this project was to determine the synergistic effects and mechanisms of action of PI3K inhibition and ICB combination in aUC. Methods Alterations affecting the PI3K pathway were examined in The Cancer Genome Atlas (TCGA) and the Cancer Dependency Map databases. Human and mouse cells with Pten deletion were used for in vitro studies. C57BL/6 mice carrying syngeneic tumors were used to determine in vivo activity, mechanisms of action and secondary resistance of pan-PI3K inhibition, ICB and combination. Results Alterations along the PI3K pathway occurred in 57% of aUCs in TCGA. CRISPR (clustered regularly interspaced short palindromic repeats) knockout of PIK3CA induced pronounced inhibition of cell proliferation (p=0.0046). PI3K inhibition suppressed cancer cell growth, migration and colony formation in vitro. Pan-PI3K inhibition, antiprogrammed death 1 (aPD1) therapy and combination improved the overall survival (OS) of syngeneic mice with PTEN-deleted tumors from 27 days of the control to 48, 37, and 65 days, respectively. In mice with tumors not containing a PI3K pathway alteration, OS was prolonged by the combination but not single treatments. Pan-PI3K inhibition significantly upregulated CD80, CD86, MHC-I, and MHC-II in dendritic cells, and downregulated the transforming growth factor beta pathway with a false discovery rate-adjusted q value of 0.001. Interferon alpha response was significantly upregulated with aPD1 therapy (q value: <0.001) and combination (q value: 0.027). Compared with the control, combination treatment increased CD8+ T-cell infiltration (p=0.005), decreased Treg-cell infiltration (p=0.036), and upregulated the expression of multiple immunostimulatory cytokines and granzyme B (p<0.01). Secondary resistance was associated with upregulation of the mammalian target of rapamycin (mTOR) pathway and multiple Sprr family genes. Conclusions The combination Pan-PI3K inhibition and ICB has significant antitumor effects in aUC with or without activated PI3K pathway and warrants further clinical investigation. This combination creates an immunostimulatory tumor milieu. Secondary resistance is associated with upregulation of the mTOR pathway and Sprr family genes.
Collapse
Affiliation(s)
- Shaoming Zhu
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.,Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - A-Hong Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Zheng Zhu
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elio Adib
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ting Rao
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.,Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Na Li
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.,Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Kaiyuan Ni
- Department of Bioengienering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Rao Prabhala
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - David Kwiatkowski
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kent Mouw
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Guru Sonpavde
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chong-Xian Pan
- Department of Internal Medicine, University of California Davis, Sacramento, CA, USA .,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW RTX toxin action often defines the outcome of bacterial infections. Here, we discuss the progress in understanding the impacts of RTX toxin activities on host immunity. RECENT FINDINGS Bordetella pertussis CyaA activity paralyzes sentinel phagocytic cells by elevating cellular cAMP levels and blocks differentiation of infiltrating monocytes into bactericidal macrophages, promoting also de-differentiation of resident alveolar macrophages into monocyte-like cells. Vibrio cholerae multifunctional autoprocessing repeats-in-toxins (MARTX), through Rho inactivating and α/β-hydrolase (ABH) domain action blocks mitogen-activated protein kinase signaling in epithelial cells and dampens the inflammatory responses of intestinal epithelia by blocking immune cell recruitment. The action of actin crosslinking effector domain and Ras/Rap1-specific endopeptidase (RRSP) domains of MARTX compromises the phagocytic ability of macrophages. Aggregatibacter actinomycetemcomitans LtxA action triggers neutrophil elastase release into periodontal tissue, compromising the epithelial barrier and promoting bacterial spreads into deeper tissue. SUMMARY Action of RTX toxins enables bacterial pathogens to cope with the fierce host immune defenses. RTX toxins often block phagocytosis and bactericidal reactive oxygen species and NO production. Some RTX toxins can reprogram the macrophages to less bactericidal cell types. Autophagy is hijacked for example by the activity of the V. cholerae ABH effector domain of the MARTX protein. Subversion of immune functions by RTX toxins thus promotes bacterial survival and proliferation in the host.
Collapse
|
8
|
Abstract
V. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation. To understand toxin-stimulated host-pathogen interactions, we performed dual-transcriptome sequencing experiments using human epithelial (HT-29) and differentiated THP-1 (dTHP-1) immune cells infected with the sepsis-causing pathogen Vibrio vulnificus (either the wild-type [WT] pathogen or a multifunctional-autoprocessing repeats-in-toxin [MARTX] toxin-deficient strain). Gene set enrichment analyses revealed MARTX toxin-dependent responses, including negative regulation of extracellular related kinase 1 (ERK1) and ERK2 (ERK1/2) signaling and cell cycle regulation in HT-29 and dTHP-1 cells, respectively. Further analysis of the expression of immune-related genes suggested that the MARTX toxin dampens immune responses in gut epithelial cells but accelerates inflammation and nuclear factor κB (NF-κB) signaling in immune cells. With respect to the pathogen, siderophore biosynthesis genes were significantly more highly expressed in WT V. vulnificus than in the MARTX toxin-deficient mutant upon infection of dTHP-1 cells. Consistent with these results, iron homeostasis genes that limit iron levels for invading pathogens were overexpressed in WT V. vulnificus-infected dTHP-1 cells. Taken together, these results suggest that MARTX toxin regulates host inflammatory responses during V. vulnificus infection while also countering host defense mechanisms such as iron limitation. IMPORTANCEV. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation.
Collapse
|
9
|
Song J, Lim HX, Lee A, Kim S, Lee JH, Kim TS. Staphylococcus succinus 14BME20 Prevents Allergic Airway Inflammation by Induction of Regulatory T Cells via Interleukin-10. Front Immunol 2019; 10:1269. [PMID: 31231389 PMCID: PMC6559308 DOI: 10.3389/fimmu.2019.01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Asthma is a common chronic inflammatory disease, which is characterized by airway hyperresponsiveness (AHR), high serum levels of immunoglobulin (Ig)E, and recruitment of various inflammatory cells such as eosinophils and lymphocytes. Korean traditional fermented foods have been reported to exert beneficial effects against allergic diseases such as asthma and atopic dermatitis. In this study, we investigated whether Staphylococcus succinus strain 14BME20 (14BME20) isolated from doenjang, a traditional high-salt-fermented soybean food of Korea, exerts suppressive effects on allergic airway inflammation in a murine model. Mice were orally administered with 14BME20, then sensitized and challenged with ovalbumin as an allergen. Administration of the 14BME20 significantly suppressed AHR and influx of inflammatory cells into the lungs and reduced serum IgE levels. Moreover, the proportion of T helper type 2 (Th2) cells and the production of Th2 cytokines were decreased in 14BME20-treated mice, whereas dendritic cells (DCs) with tolerogenic characteristics were increased. In contrast, oral administration of 14BME20 increased the proportion of CD4+CD25+Foxp3+ regulatory T (Treg) cells and the level of interleukin (IL)-10 in 14BME20-treated mice. Furthermore, 14BME20 induced maturation of tolerogenic DCs, and 14BME20-treated DCs increased Treg cell population in a co-culture system of DCs and CD4+ T cells. The addition of a neutralizing anti-IL-10 mAb to the culture of cells that had been treated with 14BME20 decreased the enhanced Treg cell population, thereby indicating that 14BME20-treated DCs increase Treg cell population via DC-derived IL-10. These results demonstrate that oral administration of 14BME20 suppresses airway inflammation by enhancing Treg responses and suggest that the 14BME20 isolated from doenjang may be a therapeutic agent for allergic asthma.
Collapse
Affiliation(s)
- Jisun Song
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hui Xuan Lim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Arim Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Soojung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, South Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|