1
|
Hundhausen N, Majumder S, Xiao Y, Haeusl SS, Goehler H, Seal R, Chiarolla CM, Rosenwald A, Eyrich M, Cicin-Sain L, Berberich-Siebelt F. NFAT single-deficient murine T cells reduce the risk of aGvHD while controlling cytomegalovirus infection. iScience 2025; 28:111937. [PMID: 40028277 PMCID: PMC11872454 DOI: 10.1016/j.isci.2025.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
NFAT is a family of transcription factors whose activation is inhibited by calcineurin inhibitors (CNIs). In allogeneic hematopoietic stem cell transplantation (allo-HCT), CNIs are employed to prevent and treat graft-versus-host disease (GvHD). Unfortunately, control of cytomegalovirus (CMV), which exacerbates clinical outcomes, is simultaneously lost. Since single NFAT deficiency in T cells ameliorates GvHD in our major mismatch model, we investigated whether protection is maintained during CMV infection. Reassuringly, NFAT-deficient T cells still improved GvHD upon acute CMV infection and after allo-HCT in latently CMV-infected mice, showing reduced proinflammatory and cytotoxic potential. In sharp contrast, CMV-specific NFAT-deficient CD8+ inflated memory T cells expanded more and with higher levels of interferon gamma (IFN-γ) and GzmB expression, effectively controlling CMV. Notably, NFAT-deficient inflated memory T cells could migrate to non-lymphoid tissues and fight CMV. Therefore, CMV infection does not interfere with the protective effect of NFAT inhibition to attenuate GvHD while allowing an anti-CMV response.
Collapse
Affiliation(s)
- Nadine Hundhausen
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Snigdha Majumder
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Yin Xiao
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sigrun S. Haeusl
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Helen Goehler
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Rishav Seal
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Matthias Eyrich
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a Joint Venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
2
|
Luo J, Zhou Y, Wang M, Zhang J, Jiang E. Inflammasomes: potential therapeutic targets in hematopoietic stem cell transplantation. Cell Commun Signal 2024; 22:596. [PMID: 39695742 DOI: 10.1186/s12964-024-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, a considerable number of patients continue to face challenges, including transplant-related complications, infection, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond to various danger signals by releasing inflammatory cytokines and even mediating cell death. While moderate activation of inflammasomes is essential for immune defense and homeostasis maintenance, excessive activation precipitates inflammatory damage. The intricate interplay between HSCT and inflammasomes arises from their pivotal roles in immune responses and inflammation. This review examines the molecular architecture and composition of various types of inflammasomes, highlighting their activation and effector mechanisms within the context of the HSCT process and its associated complications. Additionally, we summarize the therapeutic implications of targeting inflammasomes and related factors in HSCT.
Collapse
Affiliation(s)
- Jieya Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunxia Zhou
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300051, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
3
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
4
|
Bhatia U, Tadman S, Rocha A, Rudraboina R, Contreras-Ruiz L, Guinan EC. Allostimulation leads to emergence of a human B cell population with increased expression of HLA class I antigen presentation-associated molecules and the immunoglobulin receptor FcRL5. Am J Transplant 2024; 24:1968-1978. [PMID: 38992496 DOI: 10.1016/j.ajt.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
In the extensive literature characterizing lymphocyte contributions to transplant-related pathologies including allograft rejection and graft-versus-host disease, T cell-focused investigation has outpaced investigation of B cells. Most B cell-related reports describe regulatory and antibody-producing functions, with less focus on the potential role of antigen-presenting capacity. Using in vitro human mixed lymphocyte reactions (MLRs) to model allostimulation, we analyzed responder B cells using transcriptional analysis, flow cytometry, and microscopy. We observed emergence of an activated responder B cell subpopulation phenotypically similar to that described in individuals with graft-versus-host disease or allograft rejection. This population had markedly increased expression of FcRL5 (Fc receptor like 5) and molecules associated with human leukocyte antigen class I antigen presentation. Consistent with this phenotype, these cells demonstrated increased internalization of irradiated cell debris and dextran macromolecules. The proportion of this subpopulation within MLR responders also correlated with emergence of activated, cytotoxic CD8+ T cells. B cells of similar profile were quite infrequent in unstimulated blood from healthy individuals but readily identifiable in disaggregated human splenocytes and increased in both cases upon allostimulation. Further characterization of the emergence and function of this subpopulation could potentially contribute to identification of novel biomarkers and targeted therapeutics relevant to curbing transplant-related pathology.
Collapse
Affiliation(s)
- Urvashi Bhatia
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Tadman
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alyssa Rocha
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rakesh Rudraboina
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Laura Contreras-Ruiz
- Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eva C Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Abbasizadeh N, Burns CS, Verrinder R, Ghazali F, Seyedhassantehrani N, Spencer JA. Age and dose dependent changes to the bone and bone marrow microenvironment after cytotoxic conditioning with busulfan. Front Cell Dev Biol 2024; 12:1441381. [PMID: 39139448 PMCID: PMC11319712 DOI: 10.3389/fcell.2024.1441381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Preparative regimens before Hematopoietic Cell Transplantation (HCT) damage the bone marrow (BM) microenvironment, potentially leading to secondary morbidity and even mortality. The precise effects of cytotoxic preconditioning on bone and BM remodeling, regeneration, and subsequent hematopoietic recovery over time remain unclear. Moreover, the influence of recipient age and cytotoxic dose have not been fully described. In this study, we longitudinally investigated bone and BM remodeling after busulfan treatment with low intensity (LI) and high intensity (HI) regimens as a function of animal age. As expected, higher donor chimerism was observed in young mice in both LI and HI regimens compared to adult mice. Noticeably in adult mice, significant engraftment was only observed in the HI group. The integrity of the blood-bone marrow barrier in calvarial BM blood vessels was lost after busulfan treatment in the young mice and remained altered even 6 weeks after HCT. In adult mice, the severity of vascular leakage appeared to be dose-dependent, being more pronounced in HI compared to LI recipients. Interestingly, no noticeable change in blood flow velocity was observed following busulfan treatment. Ex vivo imaging of the long bones revealed a reduction in the frequency and an increase in the diameter and density of the blood vessels shortly after treatment, a phenomenon that largely recovered in young mice but persisted in older mice after 6 weeks. Furthermore, analysis of bone remodeling indicated a significant alteration in bone turnover at 6 weeks compared to earlier timepoints in both young and adult mice. Overall, our results reveal new aspects of bone and BM remodeling, as well as hematopoietic recovery, which is dependent on the cytotoxic dose and recipient age.
Collapse
Affiliation(s)
- Nastaran Abbasizadeh
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Christian S. Burns
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Ruth Verrinder
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Farhad Ghazali
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
| | - Negar Seyedhassantehrani
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Joel A. Spencer
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
6
|
Kim KH, Lee SW, Baek IJ, Song HY, Jo SJ, Ryu JW, Ryu SH, Seo JH, Kim JC, Heo SH. CD47;Rag2;IL-2rγ triple knock-out mice pre-conditioning with busulfan could be a novel platform for generating hematopoietic stem cells engrafted humanized mice. Front Immunol 2024; 15:1365946. [PMID: 39131155 PMCID: PMC11310007 DOI: 10.3389/fimmu.2024.1365946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Humanized mouse models to recapitulate human biological systems still have limitations, such as the onset of lethal graft-versus-host disease (GvHD), a variable success rate, and the low accessibility of total body irradiation (TBI). Recently, mice modified with the CD47-SIRPA axis have been studied to improve humanized mouse models. However, such trials have been rarely applied in NOD mice. In this study, we created a novel mouse strain, NOD-CD47nullRag2nullIL-2rγnull (RTKO) mice, and applied it to generate humanized mice. Methods Four-week-old female NOD-Rag2nullIL-2rγnull (RID) and RTKO mice pre-conditioned with TBI or busulfan (BSF) injection were used for generating human CD34+ hematopoietic stem cell (HSC) engrafted humanized mice. Clinical signs were observed twice a week, and body weight was measured once a week. Flow cytometry for human leukocyte antigens was performed at intervals of four weeks or two weeks, and mice were sacrificed at 48 weeks after HSC injection. Results For a long period from 16 to 40 weeks post transplantation, the percentage of hCD45 was mostly maintained above 25% in all groups, and it was sustained the longest and highest in the RTKO BSF group. Reconstruction of human leukocytes, including hCD3, was also most prominent in the RTKO BSF group. Only two mice died before 40 weeks post transplantation in all groups, and there were no life-threatening GvHD lesions except in the dead mice. The occurrence of GvHD has been identified as mainly due to human T cells infiltrating tissues and their related cytokines. Discussion Humanized mouse models under all conditions applied in this study are considered suitable models for long-term experiments based on the improvement of human leukocytes reconstruction and the stable animal health. Especially, RTKO mice pretreated with BSF are expected to be a valuable platform not only for generating humanized mice but also for various immune research fields.
Collapse
Affiliation(s)
- Kang-Hyun Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-wook Lee
- Department of Radiation Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Hye-Young Song
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seon-Ju Jo
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Je-Won Ryu
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Hee Ryu
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Hee Seo
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Ho Heo
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
- Asan Institute for Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Thompson R, Cao X. Reassessing granzyme B: unveiling perforin-independent versatility in immune responses and therapeutic potentials. Front Immunol 2024; 15:1392535. [PMID: 38846935 PMCID: PMC11153694 DOI: 10.3389/fimmu.2024.1392535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.
Collapse
Affiliation(s)
- Raylynn Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Lei YY, Chen XR, Jiang S, Guo M, Yu CL, Qiao JH, Cai B, Ai HS, Wang Y, Hu KX. Mechanisms of thymic repair of in vitro-induced precursor T cells as a haplo-identical HSCT regimen. Transplant Cell Ther 2023:S2666-6367(23)01174-0. [PMID: 36944387 DOI: 10.1016/j.jtct.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is currently an effective treatment for malignant hematological disease, but the immune deficiency and severe infection triggered by slow immune reconstitution are the main causes of high mortality and transplant failure. One of these outstanding problems is thymus damage, which is associated with graft-versus-host disease (GVHD), and preconditioning including irradiation and chemotherapy. Therefore, rapid repair of damaged thymus and rapid proliferation of thymus-derived donor T cells after transplantation are key to solving the problem. This study is designed to accelerate the recovery of thymus-derived T cells after transplantation. Wild-type mice with normal immunity were used as recipients in a haplo-HSCT mouse model to mimic clinical haplo-HSCT. A modified cell culture system using Notch ligand Delta4 and IL-7 was established that is capable of inducing and amplifying the differentiation and proliferation of hematopoietic stem cells into precursor T (preT) cells in vitro. Haplo-HSCT protocol included the preT and G-CSF mobilized donor splenic mononuclear cells (MNC) co-infusion or MNC alone. Thymic GVHD, thymic repair, and thymus-derived T cell development were compared in two groups by polychromatic immunofluorescence tracking, flow cytometry and detection of T cell receptor Vβ. The thymus homing and T-cell regeneration of allogenic preT cells were observed. The functions of preT cells in accelerating immune reconstitution, restoring thymic architecture, weakening GVH effects, and enhancing immuno-tolerance after transplantation were demonstrated. Further studies revealed that allogeneic preT cells induced by a culture system containing IL7 and Delta4 highly express ccr9 and RANKL. Interestingly, the RANK expression was promoted after preT cells' thymus homing. These results suggested that the RANK/RANKL pathway may play an important role in thymus homing. Our results provide a potential therapeutic option to optimize haplo-HSCT. It further opened up a new field of T cell therapy for artificial induction of allogeneic precursor T cells in vitro to repair the damaged thymus from irradiation and chemotherapy, and to compensate for the recovery of immune function in patients with immune deficiency caused by multiple reasons.
Collapse
Affiliation(s)
- Yang-Yang Lei
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| | - Xin-Rui Chen
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Shan Jiang
- Anhui medical university, anhui province, China
| | - Mei Guo
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Chang-Lin Yu
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Jian-Hui Qiao
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Bo Cai
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Hui-Sheng Ai
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China
| | - Yi Wang
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| | - Kai-Xun Hu
- Department of Hematology and Transplantation, the Fifth medical center, General Hospital of the People's Liberation Army, Beijing, China.
| |
Collapse
|
9
|
Obermayer B, Keilholz L, Conrad T, Frentsch M, Blau IW, Vuong L, Lesch S, Movasshagi K, Tietze-Stolley C, Loyal L, Henze L, Penack O, Stervbo U, Babel N, Haas S, Beule D, Bullinger L, Wittenbecher F, Na IK. Single-cell clonal tracking of persistent T-cells in allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1114368. [PMID: 36860867 PMCID: PMC9969884 DOI: 10.3389/fimmu.2023.1114368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
The critical balance between intended and adverse effects in allogeneic hematopoietic stem cell transplantation (alloHSCT) depends on the fate of individual donor T-cells. To this end, we tracked αβT-cell clonotypes during stem cell mobilization treatment with granulocyte-colony stimulating factor (G-CSF) in healthy donors and for six months during immune reconstitution after transfer to transplant recipients. More than 250 αβT-cell clonotypes were tracked from donor to recipient. These clonotypes consisted almost exclusively of CD8+ effector memory T cells (CD8TEM), which exhibited a different transcriptional signature with enhanced effector and cytotoxic functions compared to other CD8TEM. Importantly, these distinct and persisting clonotypes could already be delineated in the donor. We confirmed these phenotypes on the protein level and their potential for selection from the graft. Thus, we identified a transcriptional signature associated with persistence and expansion of donor T-cell clonotypes after alloHSCT that may be exploited for personalized graft manipulation strategies in future studies.
Collapse
Affiliation(s)
- Benedikt Obermayer
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Luisa Keilholz
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Conrad
- Core Unit Genomics, Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Igor-Wolfgang Blau
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lam Vuong
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Stem Cell Facility, Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stella Lesch
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Kamran Movasshagi
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Stem Cell Facility, Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carola Tietze-Stolley
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Stem Cell Facility, Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucie Loyal
- BIH Center for Exploratory Diagnostic Sciences (EDS), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Si-M/”Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charite - Universitätsmedizin Berlin, Berlin, Germany,Immunomics - Regenerative Immunology and Aging, Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- BIH Center for Exploratory Diagnostic Sciences (EDS), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Si-M/”Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charite - Universitätsmedizin Berlin, Berlin, Germany,Immunomics - Regenerative Immunology and Aging, Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Penack
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrik Stervbo
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Simon Haas
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Exploratory Diagnostic Sciences (EDS), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium (DKTK), Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,German Cancer Consortium (DKTK), Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,ECRC Experimental and Clinical Research Center, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Friedrich Wittenbecher
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Si-M/”Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charite - Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium (DKTK), Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,ECRC Experimental and Clinical Research Center, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany,*Correspondence: Il-Kang Na,
| |
Collapse
|
10
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
11
|
Yang Q, Zhang S, Wu S, Yao B, Wang L, Li Y, Peng H, Huang M, Bi Q, Xiong P, Li L, Deng Y, Deng Y. Identification of nafamostat mesylate as a selective stimulator of NK cell IFN-γ production via metabolism-related compound library screening. Immunol Res 2022; 70:354-364. [PMID: 35167033 PMCID: PMC8852993 DOI: 10.1007/s12026-022-09266-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells play important roles in controlling virus-infected and malignant cells. The identification of new molecules that can activate NK cells may effectively improve the antiviral and antitumour activities of these cells. In this study, by using a commercially available metabolism-related compound library, we initially screened the capacity of compounds to activate NK cells by determining the ratio of interferon-gamma (IFN-γ)+ NK cells by flow cytometry after the incubation of peripheral blood mononuclear cells (PBMCs) with IL-12 or IL-15 for 18 h. Our data showed that eight compounds (nafamostat mesylate (NM), loganin, fluvastatin sodium, atorvastatin calcium, lovastatin, simvastatin, rosuvastatin calcium, and pitavastatin calcium) and three compounds (NM, elesclomol, and simvastatin) increased the proportions of NK cells and CD3+ T cells that expressed IFN-γ among PBMCs cultured with IL-12 and IL-15, respectively. When incubated with enriched NK cells (purity ≥ 80.0%), only NM enhanced NK cell IFN-γ production in the presence of IL-12 or IL-15. When incubated with purified NK cells (purity ≥ 99.0%), NM promoted NK cell IFN-γ secretion in the presence or absence of IL-18. However, NM showed no effect on NK cell cytotoxicity. Collectively, our study identifies NM as a selective stimulator of IFN-γ production by NK cells, providing a new strategy for the prevention and treatment of infection or cancer in select populations.
Collapse
Affiliation(s)
- Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Baige Yao
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China. .,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China. .,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
12
|
Michniacki TF, Choi SW, Peltier DC. Immune Suppression in Allogeneic Hematopoietic Stem Cell Transplantation. Handb Exp Pharmacol 2022; 272:209-243. [PMID: 34628553 PMCID: PMC9055779 DOI: 10.1007/164_2021_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for high-risk hematologic disorders. There are multiple immune-mediated complications following allo-HSCT that are prevented and/or treated by immunosuppressive agents. Principal among these immune-mediated complications is acute graft-versus-host disease (aGVHD), which occurs when the new donor immune system targets host tissue antigens. The immunobiology of aGVHD is complex and involves all aspects of the immune system. Due to the risk of aGVHD, immunosuppressive aGVHD prophylaxis is required for nearly all allogeneic HSCT recipients. Despite prophylaxis, aGVHD remains a major cause of nonrelapse mortality. Here, we discuss the clinical features of aGVHD, the immunobiology of aGVHD, the immunosuppressive therapies used to prevent and treat aGVHD, how to mitigate the side effects of these immunosuppressive therapies, and what additional immune-mediated post-allo-HSCT complications are also treated with immunosuppression.
Collapse
Affiliation(s)
- Thomas F Michniacki
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA
| | - Sung Won Choi
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel C Peltier
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Enhanced self-renewal of human long-term hematopoietic stem cells by a sulfamoyl benzoate derivative targeting p18INK4C. Blood Adv 2021; 5:3362-3372. [PMID: 34477819 DOI: 10.1182/bloodadvances.2020004054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
The use of umbilical cord blood transplant has been substantially limited by the finite number of hematopoietic stem and progenitor cells in a single umbilical cord blood unit. Small molecules that not only quantitatively but also qualitatively stimulate enhancement of hematopoietic stem cell (HSC) self-renewal ex vivo should facilitate the clinical use of HSC transplantation and gene therapy. Recent evidence has suggested that the cyclin-dependent kinase inhibitor, p18INK4C (p18), is a critical regulator of mice HSC self-renewal. The role of p18 in human HSCs and the effect of p18 inhibitor on human HSC expansion ex vivo need further studies. Here we report that knockdown of p18 allowed for an increase in long-term colony-forming cells in vitro. We then identified an optimized small molecule inhibitor of p18, 005A, to induce ex vivo expansion of HSCs that was capable of reconstituting human hematopoiesis for at least 4 months in immunocompromised mice, and hence, similarly reconstituted secondary recipients for at least 4 more months, indicating that cells exposed to 005A were still competent in secondary recipients. Mechanistic studies showed that 005A might delay cell division and activate both the Notch signaling pathway and expression of transcription factor HoxB4, leading to enhancement of the self-renewal of long-term engrafting HSCs and the pool of progenitor cells. Taken together, these observations support a role for p18 in human HSC maintenance and that the p18 inhibitor 005A can enhance the self-renewal of long-term HSCs.
Collapse
|
14
|
Tkachev V, Kaminski J, Potter EL, Furlan SN, Yu A, Hunt DJ, McGuckin C, Zheng H, Colonna L, Gerdemann U, Carlson J, Hoffman M, Olvera J, English C, Baldessari A, Panoskaltsis-Mortari A, Watkins B, Qayed M, Suessmuth Y, Betz K, Bratrude B, Langston A, Horan JT, Ordovas-Montanes J, Shalek AK, Blazar BR, Roederer M, Kean LS. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8 + T cells drive gastrointestinal acute graft-versus-host disease. Sci Transl Med 2021; 13:13/576/eabc0227. [PMID: 33441422 DOI: 10.1126/scitranslmed.abc0227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Organ infiltration by donor T cells is critical to the development of acute graft-versus-host disease (aGVHD) in recipients after allogeneic hematopoietic stem cell transplant (allo-HCT). However, deconvoluting the transcriptional programs of newly recruited donor T cells from those of tissue-resident T cells in aGVHD target organs remains a challenge. Here, we combined the serial intravascular staining technique with single-cell RNA sequencing to dissect the tightly connected processes by which donor T cells initially infiltrate tissues and then establish a pathogenic tissue residency program in a rhesus macaque allo-HCT model that develops aGVHD. Our results enabled creation of a spatiotemporal map of the transcriptional programs controlling donor CD8+ T cell infiltration into the primary aGVHD target organ, the gastrointestinal (GI) tract. We identified the large and small intestines as the only two sites demonstrating allo-specific, rather than lymphodepletion-driven, T cell infiltration. GI-infiltrating donor CD8+ T cells demonstrated a highly activated, cytotoxic phenotype while simultaneously developing a canonical tissue-resident memory T cell (TRM) transcriptional signature driven by interleukin-15 (IL-15)/IL-21 signaling. We found expression of a cluster of genes directly associated with tissue invasiveness, including those encoding adhesion molecules (ITGB2), specific chemokines (CCL3 and CCL4L1) and chemokine receptors (CD74), as well as multiple cytoskeletal proteins. This tissue invasion transcriptional signature was validated by its ability to discriminate the CD8+ T cell transcriptome of patients with GI aGVHD from those of GVHD-free patients. These results provide insights into the mechanisms controlling tissue occupancy of target organs by pathogenic donor CD8+ TRM cells during aGVHD in primate transplant recipients.
Collapse
Affiliation(s)
- Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20858, USA
| | - Scott N Furlan
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Alison Yu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Hunt
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Connor McGuckin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hengqi Zheng
- University of Washington, Seattle, WA 98195, USA
| | - Lucrezia Colonna
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Michelle Hoffman
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Joe Olvera
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chris English
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | | | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55454, USA
| | | | - Muna Qayed
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Kayla Betz
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Brandi Bratrude
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - John T Horan
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Division of Gastroenterology, Boston Children's Hospital and Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55454, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20858, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Otsuka S, Melis N, Gaida MM, Dutta D, Weigert R, Ashwell JD. Calcineurin inhibitors suppress acute graft-versus-host disease via NFAT-independent inhibition of T cell receptor signaling. J Clin Invest 2021; 131:147683. [PMID: 33822776 DOI: 10.1172/jci147683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 01/31/2023] Open
Abstract
Inhibitors of calcineurin phosphatase activity (CNIs) such as cyclosporin A (CsA) are widely used to treat tissue transplant rejection and acute graft-versus-host disease (aGVHD), for which inhibition of gene expression dependent on nuclear factor of activated T cells (NFAT) is the mechanistic paradigm. We recently reported that CNIs inhibit TCR-proximal signaling by preventing calcineurin-mediated dephosphorylation of LckS59, an inhibitory modification, raising the possibility of another mechanism by which CNIs suppress immune responses. Here we used T cells from mice that express LckS59A, which cannot accept a phosphate at residue 59, to initiate aGVHD. Although CsA inhibited NFAT-dependent gene upregulation in allo-aggressive T cells expressing either LckWT or LckS59A, it was ineffective in treating disease when the T cells expressed LckS59A. Two important NFAT-independent T cell functions were found to be CsA-resistant in LckS59A T cells: upregulation of the cytolytic protein perforin in tissue-infiltrating CD8+ T cells and antigen-specific T/DC adhesion and clustering in lymph nodes. These results demonstrate that effective treatment of aGVHD by CsA requires NFAT-independent inhibition of TCR signaling. Given that NFATs are widely expressed and off-target effects are a major limitation in CNI use, it is possible that targeting TCR-associated calcineurin directly may provide effective therapies with less toxicity.
Collapse
Affiliation(s)
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
16
|
Ciavattone NG, Wu L, O'Neill R, Qiu J, Davila E, Cao X. MyD88 Costimulation in Donor CD8 + T Cells Enhances the Graft-versus-Tumor Effect in Murine Hematopoietic Cell Transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:892-903. [PMID: 33408257 PMCID: PMC8691539 DOI: 10.4049/jimmunol.2000479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Donor-derived lymphocytes from allogeneic hematopoietic cell transplantation (allo-HCT) or donor lymphocyte infusion can mediate eradication of host tumor cells in a process labeled the graft-versus-tumor (GVT) effect. Unfortunately, these treatments have produced limited results in various types of leukemia because of an insufficient GVT effect. In this context, molecular engineering of donor lymphocytes to increase the GVT effect may benefit cancer patients. Activating MyD88 signaling in CD8+ T cells via TLR enhances T cell activation and cytotoxicity. However, systemic administration of TLR ligands to stimulate MyD88 could induce hyperinflammation or elicit protumor effects. To circumvent this problem, we devised a synthetic molecule consisting of MyD88 linked to the ectopic domain of CD8a (CD8α:MyD88). We used this construct to test the hypothesis that MyD88 costimulation in donor CD8+ T cells increases tumor control following allo-HCT in mice by increasing T cell activation, function, and direct tumor cytotoxicity. Indeed, an increase in both in vitro and in vivo tumor control was observed with CD8α:MyD88 T cells. This increase in the GVT response was associated with increased T cell expansion, increased functional capacity, and an increase in direct cytotoxic killing of the tumor cells. However, MyD88 costimulation in donor CD8+ T cells was linked to increased yet nonlethal graft-versus-host disease in mice treated with these engineered CD8+ T cells. Given these observations, synthetic CD8α:MyD88 donor T cells may represent a unique and versatile approach to enhance the GVT response that merits further refinement to improve the effectiveness of allo-HCT.
Collapse
Affiliation(s)
- Nicholas G Ciavattone
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
| | - Long Wu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| | - Rachel O'Neill
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| | - Eduardo Davila
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201
| |
Collapse
|
17
|
Kim S, Santhanam S, Lim S, Choi J. Targeting Histone Deacetylases to Modulate Graft-Versus-Host Disease and Graft-Versus-Leukemia. Int J Mol Sci 2020; 21:ijms21124281. [PMID: 32560120 PMCID: PMC7349873 DOI: 10.3390/ijms21124281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the main therapeutic strategy for patients with both malignant and nonmalignant disorders. The therapeutic benefits of allo-HSCT in malignant disorders are primarily derived from the graft-versus-leukemia (GvL) effect, in which T cells in the donor graft recognize and eradicate residual malignant cells. However, the same donor T cells can also recognize normal host tissues as foreign, leading to the development of graft-versus-host disease (GvHD), which is difficult to separate from GvL and is the most frequent and serious complication following allo-HSCT. Inhibition of donor T cell toxicity helps in reducing GvHD but also restricts GvL activity. Therefore, developing a novel therapeutic strategy that selectively suppresses GvHD without affecting GvL is essential. Recent studies have shown that inhibition of histone deacetylases (HDACs) not only inhibits the growth of tumor cells but also regulates the cytotoxic activity of T cells. Here, we compile the known therapeutic potential of HDAC inhibitors in preventing several stages of GvHD pathogenesis. Furthermore, we will also review the current clinical features of HDAC inhibitors in preventing and treating GvHD as well as maintaining GvL.
Collapse
Affiliation(s)
- Sena Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| | | | - Sora Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|