1
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Freen-van Heeren JJ. Posttranscriptional Events Orchestrate Immune Homeostasis of CD8 + T Cells. Methods Mol Biol 2024; 2782:65-80. [PMID: 38622392 DOI: 10.1007/978-1-0716-3754-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Maintaining immune homeostasis is instrumental for host health. Immune cells, such as T cells, are instrumental for the eradication of pathogenic bacteria, fungi and viruses. Furthermore, T cells also play a major role in the fight against cancer. Through the formation of immunological memory, a pool of antigen-experienced T cells remains in the body to rapidly protect the host upon reinfection or retransformation. In order to perform their protective function, T cells produce cytolytic molecules, such as granzymes and perforin, and cytokines such as interferon γ and tumor necrosis factor α. Recently, it has become evident that posttranscriptional regulatory events dictate the kinetics and magnitude of cytokine production by murine and human CD8+ T cells. Here, the recent literature regarding the role posttranscriptional regulation plays in maintaining immune homeostasis of antigen-experienced CD8+ T cells is reviewed.
Collapse
|
3
|
Menkhorst E, So T, Rainczuk K, Barton S, Zhou W, Edgell T, Dimitriadis E. Endometrial stromal cell miR-19b-3p release is reduced during decidualization implying a role in decidual-trophoblast cross-talk. Front Endocrinol (Lausanne) 2023; 14:1149786. [PMID: 37008948 PMCID: PMC10061138 DOI: 10.3389/fendo.2023.1149786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or 'receptive' endometrium. Decidualization of uterine endometrial stromal fibroblast cells (hESF) is critical for the establishment of a healthy pregnancy. microRNAs (miRs) are critical regulators of cellular function that can be released by a donor cell to influence the physiological state of recipient cells. We aimed to determine how decidualization affects hESF miR release and investigated the function of one decidualization regulated miR, miR-19b-3p, previously shown to be associated with recurrent pregnancy loss. METHOD miR release by hESF was determined by miR microarray on culture media from hESF decidualized in vitro for 3 and 14 days by treatment with oestradiol and medroxyprogesterone acetate. Cellular and whole endometrial/decidual tissue miR expression was quantified by qPCR and localized by in situ hybridization. The function of miR-19b-3p in HTR8/Svneo trophoblast cells was investigated using real time cell analysis (xCELLigence) and gene expression qPCR. RESULTS From our miR screen we found that essentially all hESF miR release was reduced following in vitro decidualization, significantly so for miR-17-5p, miR-21-3p, miR-34c-3p, miR-106b-5p, miR-138-5p, miR-296-5p, miR-323a-3p, miR-342-3p, miR-491-5p, miR-503-5p and miR-542-5p. qPCR demonstrated that miR-19b-3p, 181a-2-3p and miR-409-5p likewise showed a significant reduction in culture media following decidualization but no change was found in cellular miR expression following decidualization. In situ hybridization localized miR-19b-3p to epithelial and stromal cells in the endometrium and qPCR identified that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss compared to normally fertile controls. Functionally, overexpression of miR-19b-3p significantly reduced HTR8/Svneo trophoblast proliferation and increased HOXA9 expression. DISCUSSION Our data demonstrates that decidualization represses miR release by hESFs and overexpression of miR-19b-3p was found in endometrial tissue from patients with a history of early pregnancy loss. miR-19b-3p impaired HTR8/Svneo proliferation implying a role in trophoblast function. Overall we speculate that miR release by hESF may regulate other cell types within the decidua and that appropriate release of miRs by decidualized hESF is essential for healthy implantation and placentation.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
- *Correspondence: Ellen Menkhorst,
| | - Teresa So
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Kate Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Siena Barton
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Wei Zhou
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Tracey Edgell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC, Australia
- Gynecology Research Centre, The Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
4
|
Lv JN, Li JQ, Cui YB, Ren YY, Fu YJ, Jiang YJ, Shang H, Zhang ZN. Plasma MicroRNA Signature Panel Predicts the Immune Response After Antiretroviral Therapy in HIV-Infected Patients. Front Immunol 2021; 12:753044. [PMID: 34887859 PMCID: PMC8650117 DOI: 10.3389/fimmu.2021.753044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Approximately 10–40% of people with human immunodeficiency virus (HIV) infection are unable to obtain successful improvements in immune function after antiretroviral therapy (ART). These patients are at greater risk of developing non-acquired immunodeficiency syndrome (AIDS)-related conditions, with the accompanying increased morbidity and mortality. Discovering predictive biomarkers can help to identify patients with a poor immune response earlier and provide new insights into the mechanisms of this condition. Methods A total of 307 people with HIV were enrolled, including 110 immune non-responders (INRs) and 197 immune responders (IRs). Plasma samples were taken before ART, and quantities of plasma microRNAs (miRNAs) were determined using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Candidate biomarkers were established through four phases: discovery, training, validation, and blinded test. Binary logistic regression was used to analyze the combined predictive capacity of the identified miRNAs. The effect of one miRNA, miR-16-5p, on T cell function was assessed in vitro. Results Expression of five miRNAs (miR-580, miR-627, miR-138-5p, miR-16-5p, and miR-323-3p) was upregulated in the plasma of INRs compared with that in IRs. Expression of these miRNAs was negatively correlated with both CD4+ T cell counts and the increase in the proportion of CD4+ T cells after one year of ART. These five miRNAs were combined in a predictive model, which could effectively identify INRs or IRs. Furthermore, we found that miR-16-5p inhibits CD4+ T cell proliferation by regulating calcium flux. Conclusion We established a five-miRNA panel in plasma that accurately predicts poor immune response after ART, which could inform strategies to reduce the incidence of this phenomenon and improve the clinical management of these patients.
Collapse
Affiliation(s)
- Jun-Nan Lv
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jia-Qi Li
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying-Bin Cui
- R&D Department, Beijing Quantobio Star Biotechnology Co., Ltd., Beijing, China
| | - Yuan-Yuan Ren
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
5
|
Nakao T, Shimada M, Yoshikawa K, Tokunaga T, Nishi M, Kashihara H, Takasu C, Wada Y, Yoshimoto T, Yamashita S, Iwakawa Y. The correlation of immunoscore and frailty in colorectal cancer. Int J Clin Oncol 2021; 27:528-537. [PMID: 34846645 DOI: 10.1007/s10147-021-02096-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The Immunoscore is a useful prognostic and predictive factor for colorectal cancer. Frailty predicts overall and recurrence-free survival following resection of colorectal cancer, and the immunosuppressive state of frailty might affect tumor progression. This study investigated the relationship between the Immunoscore and frailty in colorectal cancer. METHODS This retrospective study included patients who underwent radical surgery for stage II and III colorectal cancer (n = 108). Patients were divided into frail (n = 11) and non-frail (n = 97) groups, and low (IS0-2) (n = 70) and high (IS3-4) Immunoscore groups (n = 38), for comparison. RESULTS American Society of Anesthesiologists physical status was higher, tumor diameter was larger, number of well-differentiated tumors was higher, albumin was lower, 5-year overall survival (OS) was lower (frail group: 50.0%, non-frail group: 90.5%, p < 0.001) and 5-year disease-free survival (DFS) was lower (frail group: 36.4%, non-frail group: 75.2%, p = 0.024) in the frail than in the non-frail group. Left colon cancer was more, 5-year OS was lower (IS0-2 group: 82.0%, IS3-4 group: 96.7%, p = 0.040) and 5-year DFS was lower (IS0-2 group: 66.3%, IS3-4 group: 83.3%, p = 0.043) in the IS0-2 than in the IS3-4 group. The Immunoscore was lower in the frail than in the non-frail group. CONCLUSION Immunoscore and frailty are prognostic and predictive factors in colorectal cancer, and they are correlated with each other. The immunosuppressive state from frailty might affect this correlation.
Collapse
Affiliation(s)
- Toshihiro Nakao
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan.
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Kozo Yoshikawa
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Takuya Tokunaga
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Masaaki Nishi
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Hideya Kashihara
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Chie Takasu
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Yuma Wada
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Toshiaki Yoshimoto
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Syoko Yamashita
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| | - Yosuke Iwakawa
- Department of Digestive and Transplant Surgery, Tokushima University Hospital, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 7708503, Japan
| |
Collapse
|
6
|
Leo CG, Mincarone P, Tumolo MR, Panico A, Guido M, Zizza A, Guarino R, De Santis G, Sedile R, Sabina S. MiRNA expression profiling in HIV pathogenesis, disease progression and response to treatment: a systematic review. Epigenomics 2021; 13:1653-1671. [PMID: 34693727 DOI: 10.2217/epi-2021-0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: A systematic review was conducted to identify the association of miRNA expression with HIV pathogenesis, progression and treatment. Methods: A search of articles was conducted in MEDLINE®, Cochrane Central Register of Controlled Trials and Global Health. Results: 35 articles were included. Due to the heterogeneity of HIV phenotypes, a harmonization based on key progression parameters was proposed. The hsa-miR-29 family, hsa-miR-146b-5p and hsa-miR-150-5p, are the most frequently differentially expressed in HIV. Direct comparison of studies was not possible due to heterogeneity in biological samples and miRNA analysis techniques. Conclusion: This is the first attempt to systematically identify miRNA's different expression in well-defined patient phenotypes and could represent a helpful way to increase general knowledge in this field.
Collapse
Affiliation(s)
- Carlo Giacomo Leo
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies National Research Council, Research Unit of Brindisi, 72100, Italy
| | - Maria Rosaria Tumolo
- Institute for Research on Population & Social Policies National Research Council, Research Unit of Brindisi, 72100, Italy
| | - Alessandra Panico
- University of Salento, Department of Biological & Environmental Sciences & Technologies, Lecce, 73039, Italy
| | - Marcello Guido
- University of Salento, Department of Biological & Environmental Sciences & Technologies, Lecce, 73039, Italy
| | - Antonella Zizza
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Roberto Guarino
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Giuseppe De Santis
- Department of Neurology, Card. G. Panico Hospital, Tricase, 73039, Italy
| | - Raffaella Sedile
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| |
Collapse
|
7
|
Santamaria-Alza Y, Vasquez G. Are chimeric antigen receptor T cells (CAR-T cells) the future in immunotherapy for autoimmune diseases? Inflamm Res 2021; 70:651-663. [PMID: 34018005 DOI: 10.1007/s00011-021-01470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE CAR-T cell therapy has revolutionized the treatment of oncological diseases, and potential uses in autoimmune diseases have recently been described. The review aims to integrate the available data on treatment with CAR-T cells, emphasizing autoimmune diseases, to determine therapeutic advances and their possible future clinical applicability in autoimmunity. MATERIALS AND METHODS A search was performed in PubMed with the keywords "Chimeric Antigen Receptor" and "CART cell". The documents of interest were selected, and a critical review of the information was carried out. RESULTS In the treatment of autoimmune diseases, in preclinical models, three different cellular strategies have been used, which include Chimeric antigen receptor T cells, Chimeric autoantibody receptor T cells, and Chimeric antigen receptor in regulatory T lymphocytes. All three types of therapy have been effective. The potential adverse effects within them, cytokine release syndrome, cellular toxicity and neurotoxicity must always be kept in mind. CONCLUSIONS Although information in humans is not yet available, preclinical models of CAR-T cells in the treatment of autoimmune diseases show promising results, so that in the future, they may become a useful and effective therapy in the treatment of these pathologies.
Collapse
Affiliation(s)
- Yeison Santamaria-Alza
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia.
| | - Gloria Vasquez
- Rheumatology Section, Facultad de Medicina, Universidad de Antioquia, Street 52 number 61-30 lab 510, Medellín, Colombia
| |
Collapse
|
8
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
9
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
10
|
Chen Y, Liu W, Xu H, Liu J, Deng Y, Cheng H, Zhan T, Lu X, Liao T, Guo L, Zhu S, Pei Y, Hu J, Hu Z, Liu X, Wang X, Gu M, Hu S, Liu X. Gga-miR-19b-3p Inhibits Newcastle Disease Virus Replication by Suppressing Inflammatory Response via Targeting RNF11 and ZMYND11. Front Microbiol 2019; 10:2006. [PMID: 31507581 PMCID: PMC6718473 DOI: 10.3389/fmicb.2019.02006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022] Open
Abstract
Newcastle disease (ND), an acute and highly contagious avian disease caused by virulent Newcastle disease virus (NDV), often results in severe economic losses worldwide every year. Although it is clear that microRNAs (miRNAs) are implicated in modulating innate immune response to invading microbial pathogens, their role in host defense against NDV infection remains largely unknown. Our prior study indicates that gga-miR-19b-3p is up-regulated in NDV-infected DF-1 cells (a chicken embryo fibroblast cell line) and functions to suppress NDV replication. Here we report that overexpression of gga-miR-19b-3p promoted the production of NDV-induced inflammatory cytokines and suppressed NDV replication, whereas inhibition of endogenous gga-miR-19b-3p expression had an opposite effect. Dual-luciferase and gene expression array analyses revealed that gga-miR-19b-3p directly targets the mRNAs of ring finger protein 11 (RNF11) and zinc-finger protein, MYND-type containing 11 (ZMYND11), two negative regulators of nuclear factor kappa B (NF-κB) signaling, in DF-1 cells. RNF11 and ZMYND11 silencing by small interfering RNA (siRNA) induced NF-κB activity and inflammatory cytokine production, and suppressed NDV replication; whereas ectopic expression of these two proteins exhibited an opposite effect. Our study provides evidence that gga-miR-19b-3p activates NF-κB signaling by targeting RNF11 and ZMYND11, and that enhanced inflammatory cytokine production is likely responsible for the suppression of NDV replication.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haixu Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yonghuan Deng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hao Cheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianxing Liao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lili Guo
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuru Pei
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infections Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|